3
|
1 /* Start: bn_error.c */ |
|
2 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
3 * |
|
4 * LibTomMath is a library that provides multiple-precision |
|
5 * integer arithmetic as well as number theoretic functionality. |
|
6 * |
|
7 * The library was designed directly after the MPI library by |
|
8 * Michael Fromberger but has been written from scratch with |
|
9 * additional optimizations in place. |
|
10 * |
|
11 * The library is free for all purposes without any express |
|
12 * guarantee it works. |
|
13 * |
|
14 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
15 */ |
15
|
16 #include <ltc_tommath.h> |
3
|
17 |
|
18 static const struct { |
|
19 int code; |
|
20 char *msg; |
|
21 } msgs[] = { |
|
22 { MP_OKAY, "Successful" }, |
|
23 { MP_MEM, "Out of heap" }, |
|
24 { MP_VAL, "Value out of range" } |
|
25 }; |
|
26 |
|
27 /* return a char * string for a given code */ |
|
28 char *mp_error_to_string(int code) |
|
29 { |
|
30 int x; |
|
31 |
|
32 /* scan the lookup table for the given message */ |
|
33 for (x = 0; x < (int)(sizeof(msgs) / sizeof(msgs[0])); x++) { |
|
34 if (msgs[x].code == code) { |
|
35 return msgs[x].msg; |
|
36 } |
|
37 } |
|
38 |
|
39 /* generic reply for invalid code */ |
|
40 return "Invalid error code"; |
|
41 } |
|
42 |
|
43 |
|
44 /* End: bn_error.c */ |
|
45 |
|
46 /* Start: bn_fast_mp_invmod.c */ |
|
47 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
48 * |
|
49 * LibTomMath is a library that provides multiple-precision |
|
50 * integer arithmetic as well as number theoretic functionality. |
|
51 * |
|
52 * The library was designed directly after the MPI library by |
|
53 * Michael Fromberger but has been written from scratch with |
|
54 * additional optimizations in place. |
|
55 * |
|
56 * The library is free for all purposes without any express |
|
57 * guarantee it works. |
|
58 * |
|
59 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
60 */ |
15
|
61 #include <ltc_tommath.h> |
3
|
62 |
|
63 /* computes the modular inverse via binary extended euclidean algorithm, |
|
64 * that is c = 1/a mod b |
|
65 * |
|
66 * Based on mp_invmod except this is optimized for the case where b is |
|
67 * odd as per HAC Note 14.64 on pp. 610 |
|
68 */ |
|
69 int |
|
70 fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c) |
|
71 { |
|
72 mp_int x, y, u, v, B, D; |
|
73 int res, neg; |
|
74 |
|
75 /* 2. [modified] b must be odd */ |
|
76 if (mp_iseven (b) == 1) { |
|
77 return MP_VAL; |
|
78 } |
|
79 |
|
80 /* init all our temps */ |
|
81 if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) { |
|
82 return res; |
|
83 } |
|
84 |
|
85 /* x == modulus, y == value to invert */ |
|
86 if ((res = mp_copy (b, &x)) != MP_OKAY) { |
|
87 goto __ERR; |
|
88 } |
|
89 |
|
90 /* we need y = |a| */ |
|
91 if ((res = mp_abs (a, &y)) != MP_OKAY) { |
|
92 goto __ERR; |
|
93 } |
|
94 |
|
95 /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ |
|
96 if ((res = mp_copy (&x, &u)) != MP_OKAY) { |
|
97 goto __ERR; |
|
98 } |
|
99 if ((res = mp_copy (&y, &v)) != MP_OKAY) { |
|
100 goto __ERR; |
|
101 } |
|
102 mp_set (&D, 1); |
|
103 |
|
104 top: |
|
105 /* 4. while u is even do */ |
|
106 while (mp_iseven (&u) == 1) { |
|
107 /* 4.1 u = u/2 */ |
|
108 if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { |
|
109 goto __ERR; |
|
110 } |
|
111 /* 4.2 if B is odd then */ |
|
112 if (mp_isodd (&B) == 1) { |
|
113 if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { |
|
114 goto __ERR; |
|
115 } |
|
116 } |
|
117 /* B = B/2 */ |
|
118 if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { |
|
119 goto __ERR; |
|
120 } |
|
121 } |
|
122 |
|
123 /* 5. while v is even do */ |
|
124 while (mp_iseven (&v) == 1) { |
|
125 /* 5.1 v = v/2 */ |
|
126 if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { |
|
127 goto __ERR; |
|
128 } |
|
129 /* 5.2 if D is odd then */ |
|
130 if (mp_isodd (&D) == 1) { |
|
131 /* D = (D-x)/2 */ |
|
132 if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { |
|
133 goto __ERR; |
|
134 } |
|
135 } |
|
136 /* D = D/2 */ |
|
137 if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { |
|
138 goto __ERR; |
|
139 } |
|
140 } |
|
141 |
|
142 /* 6. if u >= v then */ |
|
143 if (mp_cmp (&u, &v) != MP_LT) { |
|
144 /* u = u - v, B = B - D */ |
|
145 if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { |
|
146 goto __ERR; |
|
147 } |
|
148 |
|
149 if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { |
|
150 goto __ERR; |
|
151 } |
|
152 } else { |
|
153 /* v - v - u, D = D - B */ |
|
154 if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { |
|
155 goto __ERR; |
|
156 } |
|
157 |
|
158 if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { |
|
159 goto __ERR; |
|
160 } |
|
161 } |
|
162 |
|
163 /* if not zero goto step 4 */ |
|
164 if (mp_iszero (&u) == 0) { |
|
165 goto top; |
|
166 } |
|
167 |
|
168 /* now a = C, b = D, gcd == g*v */ |
|
169 |
|
170 /* if v != 1 then there is no inverse */ |
|
171 if (mp_cmp_d (&v, 1) != MP_EQ) { |
|
172 res = MP_VAL; |
|
173 goto __ERR; |
|
174 } |
|
175 |
|
176 /* b is now the inverse */ |
|
177 neg = a->sign; |
|
178 while (D.sign == MP_NEG) { |
|
179 if ((res = mp_add (&D, b, &D)) != MP_OKAY) { |
|
180 goto __ERR; |
|
181 } |
|
182 } |
|
183 mp_exch (&D, c); |
|
184 c->sign = neg; |
|
185 res = MP_OKAY; |
|
186 |
|
187 __ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL); |
|
188 return res; |
|
189 } |
|
190 |
|
191 /* End: bn_fast_mp_invmod.c */ |
|
192 |
|
193 /* Start: bn_fast_mp_montgomery_reduce.c */ |
|
194 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
195 * |
|
196 * LibTomMath is a library that provides multiple-precision |
|
197 * integer arithmetic as well as number theoretic functionality. |
|
198 * |
|
199 * The library was designed directly after the MPI library by |
|
200 * Michael Fromberger but has been written from scratch with |
|
201 * additional optimizations in place. |
|
202 * |
|
203 * The library is free for all purposes without any express |
|
204 * guarantee it works. |
|
205 * |
|
206 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
207 */ |
15
|
208 #include <ltc_tommath.h> |
3
|
209 |
|
210 /* computes xR**-1 == x (mod N) via Montgomery Reduction |
|
211 * |
|
212 * This is an optimized implementation of mp_montgomery_reduce |
|
213 * which uses the comba method to quickly calculate the columns of the |
|
214 * reduction. |
|
215 * |
|
216 * Based on Algorithm 14.32 on pp.601 of HAC. |
|
217 */ |
|
218 int |
|
219 fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) |
|
220 { |
|
221 int ix, res, olduse; |
|
222 mp_word W[MP_WARRAY]; |
|
223 |
|
224 /* get old used count */ |
|
225 olduse = x->used; |
|
226 |
|
227 /* grow a as required */ |
|
228 if (x->alloc < n->used + 1) { |
|
229 if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) { |
|
230 return res; |
|
231 } |
|
232 } |
|
233 |
|
234 /* first we have to get the digits of the input into |
|
235 * an array of double precision words W[...] |
|
236 */ |
|
237 { |
|
238 register mp_word *_W; |
|
239 register mp_digit *tmpx; |
|
240 |
|
241 /* alias for the W[] array */ |
|
242 _W = W; |
|
243 |
|
244 /* alias for the digits of x*/ |
|
245 tmpx = x->dp; |
|
246 |
|
247 /* copy the digits of a into W[0..a->used-1] */ |
|
248 for (ix = 0; ix < x->used; ix++) { |
|
249 *_W++ = *tmpx++; |
|
250 } |
|
251 |
|
252 /* zero the high words of W[a->used..m->used*2] */ |
|
253 for (; ix < n->used * 2 + 1; ix++) { |
|
254 *_W++ = 0; |
|
255 } |
|
256 } |
|
257 |
|
258 /* now we proceed to zero successive digits |
|
259 * from the least significant upwards |
|
260 */ |
|
261 for (ix = 0; ix < n->used; ix++) { |
|
262 /* mu = ai * m' mod b |
|
263 * |
|
264 * We avoid a double precision multiplication (which isn't required) |
|
265 * by casting the value down to a mp_digit. Note this requires |
|
266 * that W[ix-1] have the carry cleared (see after the inner loop) |
|
267 */ |
|
268 register mp_digit mu; |
|
269 mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK); |
|
270 |
|
271 /* a = a + mu * m * b**i |
|
272 * |
|
273 * This is computed in place and on the fly. The multiplication |
|
274 * by b**i is handled by offseting which columns the results |
|
275 * are added to. |
|
276 * |
|
277 * Note the comba method normally doesn't handle carries in the |
|
278 * inner loop In this case we fix the carry from the previous |
|
279 * column since the Montgomery reduction requires digits of the |
|
280 * result (so far) [see above] to work. This is |
|
281 * handled by fixing up one carry after the inner loop. The |
|
282 * carry fixups are done in order so after these loops the |
|
283 * first m->used words of W[] have the carries fixed |
|
284 */ |
|
285 { |
|
286 register int iy; |
|
287 register mp_digit *tmpn; |
|
288 register mp_word *_W; |
|
289 |
|
290 /* alias for the digits of the modulus */ |
|
291 tmpn = n->dp; |
|
292 |
|
293 /* Alias for the columns set by an offset of ix */ |
|
294 _W = W + ix; |
|
295 |
|
296 /* inner loop */ |
|
297 for (iy = 0; iy < n->used; iy++) { |
|
298 *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++); |
|
299 } |
|
300 } |
|
301 |
|
302 /* now fix carry for next digit, W[ix+1] */ |
|
303 W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT); |
|
304 } |
|
305 |
|
306 /* now we have to propagate the carries and |
|
307 * shift the words downward [all those least |
|
308 * significant digits we zeroed]. |
|
309 */ |
|
310 { |
|
311 register mp_digit *tmpx; |
|
312 register mp_word *_W, *_W1; |
|
313 |
|
314 /* nox fix rest of carries */ |
|
315 |
|
316 /* alias for current word */ |
|
317 _W1 = W + ix; |
|
318 |
|
319 /* alias for next word, where the carry goes */ |
|
320 _W = W + ++ix; |
|
321 |
|
322 for (; ix <= n->used * 2 + 1; ix++) { |
|
323 *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT); |
|
324 } |
|
325 |
|
326 /* copy out, A = A/b**n |
|
327 * |
|
328 * The result is A/b**n but instead of converting from an |
|
329 * array of mp_word to mp_digit than calling mp_rshd |
|
330 * we just copy them in the right order |
|
331 */ |
|
332 |
|
333 /* alias for destination word */ |
|
334 tmpx = x->dp; |
|
335 |
|
336 /* alias for shifted double precision result */ |
|
337 _W = W + n->used; |
|
338 |
|
339 for (ix = 0; ix < n->used + 1; ix++) { |
|
340 *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK)); |
|
341 } |
|
342 |
|
343 /* zero oldused digits, if the input a was larger than |
|
344 * m->used+1 we'll have to clear the digits |
|
345 */ |
|
346 for (; ix < olduse; ix++) { |
|
347 *tmpx++ = 0; |
|
348 } |
|
349 } |
|
350 |
|
351 /* set the max used and clamp */ |
|
352 x->used = n->used + 1; |
|
353 mp_clamp (x); |
|
354 |
|
355 /* if A >= m then A = A - m */ |
|
356 if (mp_cmp_mag (x, n) != MP_LT) { |
|
357 return s_mp_sub (x, n, x); |
|
358 } |
|
359 return MP_OKAY; |
|
360 } |
|
361 |
|
362 /* End: bn_fast_mp_montgomery_reduce.c */ |
|
363 |
|
364 /* Start: bn_fast_s_mp_mul_digs.c */ |
|
365 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
366 * |
|
367 * LibTomMath is a library that provides multiple-precision |
|
368 * integer arithmetic as well as number theoretic functionality. |
|
369 * |
|
370 * The library was designed directly after the MPI library by |
|
371 * Michael Fromberger but has been written from scratch with |
|
372 * additional optimizations in place. |
|
373 * |
|
374 * The library is free for all purposes without any express |
|
375 * guarantee it works. |
|
376 * |
|
377 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
378 */ |
15
|
379 #include <ltc_tommath.h> |
3
|
380 |
|
381 /* Fast (comba) multiplier |
|
382 * |
|
383 * This is the fast column-array [comba] multiplier. It is |
|
384 * designed to compute the columns of the product first |
|
385 * then handle the carries afterwards. This has the effect |
|
386 * of making the nested loops that compute the columns very |
|
387 * simple and schedulable on super-scalar processors. |
|
388 * |
|
389 * This has been modified to produce a variable number of |
|
390 * digits of output so if say only a half-product is required |
|
391 * you don't have to compute the upper half (a feature |
|
392 * required for fast Barrett reduction). |
|
393 * |
|
394 * Based on Algorithm 14.12 on pp.595 of HAC. |
|
395 * |
|
396 */ |
|
397 int |
|
398 fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) |
|
399 { |
|
400 int olduse, res, pa, ix; |
|
401 mp_word W[MP_WARRAY]; |
|
402 |
|
403 /* grow the destination as required */ |
|
404 if (c->alloc < digs) { |
|
405 if ((res = mp_grow (c, digs)) != MP_OKAY) { |
|
406 return res; |
|
407 } |
|
408 } |
|
409 |
|
410 /* clear temp buf (the columns) */ |
|
411 memset (W, 0, sizeof (mp_word) * digs); |
|
412 |
|
413 /* calculate the columns */ |
|
414 pa = a->used; |
|
415 for (ix = 0; ix < pa; ix++) { |
|
416 /* this multiplier has been modified to allow you to |
|
417 * control how many digits of output are produced. |
|
418 * So at most we want to make upto "digs" digits of output. |
|
419 * |
|
420 * this adds products to distinct columns (at ix+iy) of W |
|
421 * note that each step through the loop is not dependent on |
|
422 * the previous which means the compiler can easily unroll |
|
423 * the loop without scheduling problems |
|
424 */ |
|
425 { |
|
426 register mp_digit tmpx, *tmpy; |
|
427 register mp_word *_W; |
|
428 register int iy, pb; |
|
429 |
|
430 /* alias for the the word on the left e.g. A[ix] * A[iy] */ |
|
431 tmpx = a->dp[ix]; |
|
432 |
|
433 /* alias for the right side */ |
|
434 tmpy = b->dp; |
|
435 |
|
436 /* alias for the columns, each step through the loop adds a new |
|
437 term to each column |
|
438 */ |
|
439 _W = W + ix; |
|
440 |
|
441 /* the number of digits is limited by their placement. E.g. |
|
442 we avoid multiplying digits that will end up above the # of |
|
443 digits of precision requested |
|
444 */ |
|
445 pb = MIN (b->used, digs - ix); |
|
446 |
|
447 for (iy = 0; iy < pb; iy++) { |
|
448 *_W++ += ((mp_word)tmpx) * ((mp_word)*tmpy++); |
|
449 } |
|
450 } |
|
451 |
|
452 } |
|
453 |
|
454 /* setup dest */ |
15
|
455 olduse = c->used; |
3
|
456 c->used = digs; |
|
457 |
|
458 { |
|
459 register mp_digit *tmpc; |
|
460 |
|
461 /* At this point W[] contains the sums of each column. To get the |
|
462 * correct result we must take the extra bits from each column and |
|
463 * carry them down |
|
464 * |
|
465 * Note that while this adds extra code to the multiplier it |
|
466 * saves time since the carry propagation is removed from the |
|
467 * above nested loop.This has the effect of reducing the work |
|
468 * from N*(N+N*c)==N**2 + c*N**2 to N**2 + N*c where c is the |
|
469 * cost of the shifting. On very small numbers this is slower |
|
470 * but on most cryptographic size numbers it is faster. |
|
471 * |
|
472 * In this particular implementation we feed the carries from |
|
473 * behind which means when the loop terminates we still have one |
|
474 * last digit to copy |
|
475 */ |
|
476 tmpc = c->dp; |
|
477 for (ix = 1; ix < digs; ix++) { |
|
478 /* forward the carry from the previous temp */ |
|
479 W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT)); |
|
480 |
|
481 /* now extract the previous digit [below the carry] */ |
|
482 *tmpc++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK)); |
|
483 } |
|
484 /* fetch the last digit */ |
|
485 *tmpc++ = (mp_digit) (W[digs - 1] & ((mp_word) MP_MASK)); |
|
486 |
|
487 /* clear unused digits [that existed in the old copy of c] */ |
|
488 for (; ix < olduse; ix++) { |
|
489 *tmpc++ = 0; |
|
490 } |
|
491 } |
|
492 mp_clamp (c); |
|
493 return MP_OKAY; |
|
494 } |
|
495 |
|
496 /* End: bn_fast_s_mp_mul_digs.c */ |
|
497 |
|
498 /* Start: bn_fast_s_mp_mul_high_digs.c */ |
|
499 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
500 * |
|
501 * LibTomMath is a library that provides multiple-precision |
|
502 * integer arithmetic as well as number theoretic functionality. |
|
503 * |
|
504 * The library was designed directly after the MPI library by |
|
505 * Michael Fromberger but has been written from scratch with |
|
506 * additional optimizations in place. |
|
507 * |
|
508 * The library is free for all purposes without any express |
|
509 * guarantee it works. |
|
510 * |
|
511 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
512 */ |
15
|
513 #include <ltc_tommath.h> |
3
|
514 |
|
515 /* this is a modified version of fast_s_mp_mul_digs that only produces |
|
516 * output digits *above* digs. See the comments for fast_s_mp_mul_digs |
|
517 * to see how it works. |
|
518 * |
|
519 * This is used in the Barrett reduction since for one of the multiplications |
|
520 * only the higher digits were needed. This essentially halves the work. |
|
521 * |
|
522 * Based on Algorithm 14.12 on pp.595 of HAC. |
|
523 */ |
|
524 int |
|
525 fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) |
|
526 { |
|
527 int oldused, newused, res, pa, pb, ix; |
|
528 mp_word W[MP_WARRAY]; |
|
529 |
|
530 /* calculate size of product and allocate more space if required */ |
|
531 newused = a->used + b->used + 1; |
|
532 if (c->alloc < newused) { |
|
533 if ((res = mp_grow (c, newused)) != MP_OKAY) { |
|
534 return res; |
|
535 } |
|
536 } |
|
537 |
|
538 /* like the other comba method we compute the columns first */ |
|
539 pa = a->used; |
|
540 pb = b->used; |
|
541 memset (W + digs, 0, (pa + pb + 1 - digs) * sizeof (mp_word)); |
|
542 for (ix = 0; ix < pa; ix++) { |
|
543 { |
|
544 register mp_digit tmpx, *tmpy; |
|
545 register int iy; |
|
546 register mp_word *_W; |
|
547 |
|
548 /* work todo, that is we only calculate digits that are at "digs" or above */ |
|
549 iy = digs - ix; |
|
550 |
|
551 /* copy of word on the left of A[ix] * B[iy] */ |
|
552 tmpx = a->dp[ix]; |
|
553 |
|
554 /* alias for right side */ |
|
555 tmpy = b->dp + iy; |
|
556 |
|
557 /* alias for the columns of output. Offset to be equal to or above the |
|
558 * smallest digit place requested |
|
559 */ |
|
560 _W = W + digs; |
|
561 |
|
562 /* skip cases below zero where ix > digs */ |
|
563 if (iy < 0) { |
|
564 iy = abs(iy); |
|
565 tmpy += iy; |
|
566 _W += iy; |
|
567 iy = 0; |
|
568 } |
|
569 |
|
570 /* compute column products for digits above the minimum */ |
|
571 for (; iy < pb; iy++) { |
|
572 *_W++ += ((mp_word) tmpx) * ((mp_word)*tmpy++); |
|
573 } |
|
574 } |
|
575 } |
|
576 |
|
577 /* setup dest */ |
|
578 oldused = c->used; |
|
579 c->used = newused; |
|
580 |
|
581 /* now convert the array W downto what we need |
|
582 * |
|
583 * See comments in bn_fast_s_mp_mul_digs.c |
|
584 */ |
|
585 for (ix = digs + 1; ix < newused; ix++) { |
|
586 W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT)); |
|
587 c->dp[ix - 1] = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK)); |
|
588 } |
|
589 c->dp[newused - 1] = (mp_digit) (W[newused - 1] & ((mp_word) MP_MASK)); |
|
590 |
|
591 for (; ix < oldused; ix++) { |
|
592 c->dp[ix] = 0; |
|
593 } |
|
594 mp_clamp (c); |
|
595 return MP_OKAY; |
|
596 } |
|
597 |
|
598 /* End: bn_fast_s_mp_mul_high_digs.c */ |
|
599 |
|
600 /* Start: bn_fast_s_mp_sqr.c */ |
|
601 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
602 * |
|
603 * LibTomMath is a library that provides multiple-precision |
|
604 * integer arithmetic as well as number theoretic functionality. |
|
605 * |
|
606 * The library was designed directly after the MPI library by |
|
607 * Michael Fromberger but has been written from scratch with |
|
608 * additional optimizations in place. |
|
609 * |
|
610 * The library is free for all purposes without any express |
|
611 * guarantee it works. |
|
612 * |
|
613 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
614 */ |
15
|
615 #include <ltc_tommath.h> |
3
|
616 |
|
617 /* fast squaring |
|
618 * |
|
619 * This is the comba method where the columns of the product |
|
620 * are computed first then the carries are computed. This |
|
621 * has the effect of making a very simple inner loop that |
|
622 * is executed the most |
|
623 * |
|
624 * W2 represents the outer products and W the inner. |
|
625 * |
|
626 * A further optimizations is made because the inner |
|
627 * products are of the form "A * B * 2". The *2 part does |
|
628 * not need to be computed until the end which is good |
|
629 * because 64-bit shifts are slow! |
|
630 * |
|
631 * Based on Algorithm 14.16 on pp.597 of HAC. |
|
632 * |
|
633 */ |
|
634 int fast_s_mp_sqr (mp_int * a, mp_int * b) |
|
635 { |
|
636 int olduse, newused, res, ix, pa; |
|
637 mp_word W2[MP_WARRAY], W[MP_WARRAY]; |
|
638 |
|
639 /* calculate size of product and allocate as required */ |
|
640 pa = a->used; |
|
641 newused = pa + pa + 1; |
|
642 if (b->alloc < newused) { |
|
643 if ((res = mp_grow (b, newused)) != MP_OKAY) { |
|
644 return res; |
|
645 } |
|
646 } |
|
647 |
|
648 /* zero temp buffer (columns) |
|
649 * Note that there are two buffers. Since squaring requires |
|
650 * a outer and inner product and the inner product requires |
|
651 * computing a product and doubling it (a relatively expensive |
|
652 * op to perform n**2 times if you don't have to) the inner and |
|
653 * outer products are computed in different buffers. This way |
|
654 * the inner product can be doubled using n doublings instead of |
|
655 * n**2 |
|
656 */ |
|
657 memset (W, 0, newused * sizeof (mp_word)); |
|
658 memset (W2, 0, newused * sizeof (mp_word)); |
|
659 |
|
660 /* This computes the inner product. To simplify the inner N**2 loop |
|
661 * the multiplication by two is done afterwards in the N loop. |
|
662 */ |
|
663 for (ix = 0; ix < pa; ix++) { |
|
664 /* compute the outer product |
|
665 * |
|
666 * Note that every outer product is computed |
|
667 * for a particular column only once which means that |
|
668 * there is no need todo a double precision addition |
|
669 * into the W2[] array. |
|
670 */ |
|
671 W2[ix + ix] = ((mp_word)a->dp[ix]) * ((mp_word)a->dp[ix]); |
|
672 |
|
673 { |
|
674 register mp_digit tmpx, *tmpy; |
|
675 register mp_word *_W; |
|
676 register int iy; |
|
677 |
|
678 /* copy of left side */ |
|
679 tmpx = a->dp[ix]; |
|
680 |
|
681 /* alias for right side */ |
|
682 tmpy = a->dp + (ix + 1); |
|
683 |
|
684 /* the column to store the result in */ |
|
685 _W = W + (ix + ix + 1); |
|
686 |
|
687 /* inner products */ |
|
688 for (iy = ix + 1; iy < pa; iy++) { |
|
689 *_W++ += ((mp_word)tmpx) * ((mp_word)*tmpy++); |
|
690 } |
|
691 } |
|
692 } |
|
693 |
|
694 /* setup dest */ |
|
695 olduse = b->used; |
|
696 b->used = newused; |
|
697 |
|
698 /* now compute digits |
|
699 * |
|
700 * We have to double the inner product sums, add in the |
|
701 * outer product sums, propagate carries and convert |
|
702 * to single precision. |
|
703 */ |
|
704 { |
|
705 register mp_digit *tmpb; |
|
706 |
|
707 /* double first value, since the inner products are |
|
708 * half of what they should be |
|
709 */ |
|
710 W[0] += W[0] + W2[0]; |
|
711 |
|
712 tmpb = b->dp; |
|
713 for (ix = 1; ix < newused; ix++) { |
|
714 /* double/add next digit */ |
|
715 W[ix] += W[ix] + W2[ix]; |
|
716 |
|
717 /* propagate carry forwards [from the previous digit] */ |
|
718 W[ix] = W[ix] + (W[ix - 1] >> ((mp_word) DIGIT_BIT)); |
|
719 |
|
720 /* store the current digit now that the carry isn't |
|
721 * needed |
|
722 */ |
|
723 *tmpb++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK)); |
|
724 } |
|
725 /* set the last value. Note even if the carry is zero |
|
726 * this is required since the next step will not zero |
|
727 * it if b originally had a value at b->dp[2*a.used] |
|
728 */ |
|
729 *tmpb++ = (mp_digit) (W[(newused) - 1] & ((mp_word) MP_MASK)); |
|
730 |
|
731 /* clear high digits of b if there were any originally */ |
|
732 for (; ix < olduse; ix++) { |
|
733 *tmpb++ = 0; |
|
734 } |
|
735 } |
|
736 |
|
737 mp_clamp (b); |
|
738 return MP_OKAY; |
|
739 } |
|
740 |
|
741 /* End: bn_fast_s_mp_sqr.c */ |
|
742 |
|
743 /* Start: bn_mp_2expt.c */ |
|
744 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
745 * |
|
746 * LibTomMath is a library that provides multiple-precision |
|
747 * integer arithmetic as well as number theoretic functionality. |
|
748 * |
|
749 * The library was designed directly after the MPI library by |
|
750 * Michael Fromberger but has been written from scratch with |
|
751 * additional optimizations in place. |
|
752 * |
|
753 * The library is free for all purposes without any express |
|
754 * guarantee it works. |
|
755 * |
|
756 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
757 */ |
15
|
758 #include <ltc_tommath.h> |
3
|
759 |
|
760 /* computes a = 2**b |
|
761 * |
|
762 * Simple algorithm which zeroes the int, grows it then just sets one bit |
|
763 * as required. |
|
764 */ |
|
765 int |
|
766 mp_2expt (mp_int * a, int b) |
|
767 { |
|
768 int res; |
|
769 |
|
770 /* zero a as per default */ |
|
771 mp_zero (a); |
|
772 |
|
773 /* grow a to accomodate the single bit */ |
|
774 if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) { |
|
775 return res; |
|
776 } |
|
777 |
|
778 /* set the used count of where the bit will go */ |
|
779 a->used = b / DIGIT_BIT + 1; |
|
780 |
|
781 /* put the single bit in its place */ |
|
782 a->dp[b / DIGIT_BIT] = 1 << (b % DIGIT_BIT); |
|
783 |
|
784 return MP_OKAY; |
|
785 } |
|
786 |
|
787 /* End: bn_mp_2expt.c */ |
|
788 |
|
789 /* Start: bn_mp_abs.c */ |
|
790 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
791 * |
|
792 * LibTomMath is a library that provides multiple-precision |
|
793 * integer arithmetic as well as number theoretic functionality. |
|
794 * |
|
795 * The library was designed directly after the MPI library by |
|
796 * Michael Fromberger but has been written from scratch with |
|
797 * additional optimizations in place. |
|
798 * |
|
799 * The library is free for all purposes without any express |
|
800 * guarantee it works. |
|
801 * |
|
802 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
803 */ |
15
|
804 #include <ltc_tommath.h> |
3
|
805 |
|
806 /* b = |a| |
|
807 * |
|
808 * Simple function copies the input and fixes the sign to positive |
|
809 */ |
|
810 int |
|
811 mp_abs (mp_int * a, mp_int * b) |
|
812 { |
|
813 int res; |
|
814 |
|
815 /* copy a to b */ |
|
816 if (a != b) { |
|
817 if ((res = mp_copy (a, b)) != MP_OKAY) { |
|
818 return res; |
|
819 } |
|
820 } |
|
821 |
|
822 /* force the sign of b to positive */ |
|
823 b->sign = MP_ZPOS; |
|
824 |
|
825 return MP_OKAY; |
|
826 } |
|
827 |
|
828 /* End: bn_mp_abs.c */ |
|
829 |
|
830 /* Start: bn_mp_add.c */ |
|
831 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
832 * |
|
833 * LibTomMath is a library that provides multiple-precision |
|
834 * integer arithmetic as well as number theoretic functionality. |
|
835 * |
|
836 * The library was designed directly after the MPI library by |
|
837 * Michael Fromberger but has been written from scratch with |
|
838 * additional optimizations in place. |
|
839 * |
|
840 * The library is free for all purposes without any express |
|
841 * guarantee it works. |
|
842 * |
|
843 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
844 */ |
15
|
845 #include <ltc_tommath.h> |
3
|
846 |
|
847 /* high level addition (handles signs) */ |
|
848 int mp_add (mp_int * a, mp_int * b, mp_int * c) |
|
849 { |
|
850 int sa, sb, res; |
|
851 |
|
852 /* get sign of both inputs */ |
|
853 sa = a->sign; |
|
854 sb = b->sign; |
|
855 |
|
856 /* handle two cases, not four */ |
|
857 if (sa == sb) { |
|
858 /* both positive or both negative */ |
|
859 /* add their magnitudes, copy the sign */ |
|
860 c->sign = sa; |
|
861 res = s_mp_add (a, b, c); |
|
862 } else { |
|
863 /* one positive, the other negative */ |
|
864 /* subtract the one with the greater magnitude from */ |
|
865 /* the one of the lesser magnitude. The result gets */ |
|
866 /* the sign of the one with the greater magnitude. */ |
|
867 if (mp_cmp_mag (a, b) == MP_LT) { |
|
868 c->sign = sb; |
|
869 res = s_mp_sub (b, a, c); |
|
870 } else { |
|
871 c->sign = sa; |
|
872 res = s_mp_sub (a, b, c); |
|
873 } |
|
874 } |
|
875 return res; |
|
876 } |
|
877 |
|
878 |
|
879 /* End: bn_mp_add.c */ |
|
880 |
|
881 /* Start: bn_mp_add_d.c */ |
|
882 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
883 * |
|
884 * LibTomMath is a library that provides multiple-precision |
|
885 * integer arithmetic as well as number theoretic functionality. |
|
886 * |
|
887 * The library was designed directly after the MPI library by |
|
888 * Michael Fromberger but has been written from scratch with |
|
889 * additional optimizations in place. |
|
890 * |
|
891 * The library is free for all purposes without any express |
|
892 * guarantee it works. |
|
893 * |
|
894 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
895 */ |
15
|
896 #include <ltc_tommath.h> |
3
|
897 |
|
898 /* single digit addition */ |
|
899 int |
|
900 mp_add_d (mp_int * a, mp_digit b, mp_int * c) |
|
901 { |
|
902 int res, ix, oldused; |
|
903 mp_digit *tmpa, *tmpc, mu; |
|
904 |
|
905 /* grow c as required */ |
|
906 if (c->alloc < a->used + 1) { |
|
907 if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { |
|
908 return res; |
|
909 } |
|
910 } |
|
911 |
|
912 /* if a is negative and |a| >= b, call c = |a| - b */ |
|
913 if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) { |
|
914 /* temporarily fix sign of a */ |
|
915 a->sign = MP_ZPOS; |
|
916 |
|
917 /* c = |a| - b */ |
|
918 res = mp_sub_d(a, b, c); |
|
919 |
|
920 /* fix sign */ |
|
921 a->sign = c->sign = MP_NEG; |
|
922 |
|
923 return res; |
|
924 } |
|
925 |
|
926 /* old number of used digits in c */ |
|
927 oldused = c->used; |
|
928 |
|
929 /* sign always positive */ |
|
930 c->sign = MP_ZPOS; |
|
931 |
|
932 /* source alias */ |
|
933 tmpa = a->dp; |
|
934 |
|
935 /* destination alias */ |
|
936 tmpc = c->dp; |
|
937 |
|
938 /* if a is positive */ |
|
939 if (a->sign == MP_ZPOS) { |
|
940 /* add digit, after this we're propagating |
|
941 * the carry. |
|
942 */ |
|
943 *tmpc = *tmpa++ + b; |
|
944 mu = *tmpc >> DIGIT_BIT; |
|
945 *tmpc++ &= MP_MASK; |
|
946 |
|
947 /* now handle rest of the digits */ |
|
948 for (ix = 1; ix < a->used; ix++) { |
|
949 *tmpc = *tmpa++ + mu; |
|
950 mu = *tmpc >> DIGIT_BIT; |
|
951 *tmpc++ &= MP_MASK; |
|
952 } |
|
953 /* set final carry */ |
|
954 ix++; |
|
955 *tmpc++ = mu; |
|
956 |
|
957 /* setup size */ |
|
958 c->used = a->used + 1; |
|
959 } else { |
|
960 /* a was negative and |a| < b */ |
|
961 c->used = 1; |
|
962 |
|
963 /* the result is a single digit */ |
|
964 if (a->used == 1) { |
|
965 *tmpc++ = b - a->dp[0]; |
|
966 } else { |
|
967 *tmpc++ = b; |
|
968 } |
|
969 |
|
970 /* setup count so the clearing of oldused |
|
971 * can fall through correctly |
|
972 */ |
|
973 ix = 1; |
|
974 } |
|
975 |
|
976 /* now zero to oldused */ |
|
977 while (ix++ < oldused) { |
|
978 *tmpc++ = 0; |
|
979 } |
|
980 mp_clamp(c); |
|
981 |
|
982 return MP_OKAY; |
|
983 } |
|
984 |
|
985 |
|
986 /* End: bn_mp_add_d.c */ |
|
987 |
|
988 /* Start: bn_mp_addmod.c */ |
|
989 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
990 * |
|
991 * LibTomMath is a library that provides multiple-precision |
|
992 * integer arithmetic as well as number theoretic functionality. |
|
993 * |
|
994 * The library was designed directly after the MPI library by |
|
995 * Michael Fromberger but has been written from scratch with |
|
996 * additional optimizations in place. |
|
997 * |
|
998 * The library is free for all purposes without any express |
|
999 * guarantee it works. |
|
1000 * |
|
1001 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
1002 */ |
15
|
1003 #include <ltc_tommath.h> |
3
|
1004 |
|
1005 /* d = a + b (mod c) */ |
|
1006 int |
|
1007 mp_addmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d) |
|
1008 { |
|
1009 int res; |
|
1010 mp_int t; |
|
1011 |
|
1012 if ((res = mp_init (&t)) != MP_OKAY) { |
|
1013 return res; |
|
1014 } |
|
1015 |
|
1016 if ((res = mp_add (a, b, &t)) != MP_OKAY) { |
|
1017 mp_clear (&t); |
|
1018 return res; |
|
1019 } |
|
1020 res = mp_mod (&t, c, d); |
|
1021 mp_clear (&t); |
|
1022 return res; |
|
1023 } |
|
1024 |
|
1025 /* End: bn_mp_addmod.c */ |
|
1026 |
|
1027 /* Start: bn_mp_and.c */ |
|
1028 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
1029 * |
|
1030 * LibTomMath is a library that provides multiple-precision |
|
1031 * integer arithmetic as well as number theoretic functionality. |
|
1032 * |
|
1033 * The library was designed directly after the MPI library by |
|
1034 * Michael Fromberger but has been written from scratch with |
|
1035 * additional optimizations in place. |
|
1036 * |
|
1037 * The library is free for all purposes without any express |
|
1038 * guarantee it works. |
|
1039 * |
|
1040 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
1041 */ |
15
|
1042 #include <ltc_tommath.h> |
3
|
1043 |
|
1044 /* AND two ints together */ |
|
1045 int |
|
1046 mp_and (mp_int * a, mp_int * b, mp_int * c) |
|
1047 { |
|
1048 int res, ix, px; |
|
1049 mp_int t, *x; |
|
1050 |
|
1051 if (a->used > b->used) { |
|
1052 if ((res = mp_init_copy (&t, a)) != MP_OKAY) { |
|
1053 return res; |
|
1054 } |
|
1055 px = b->used; |
|
1056 x = b; |
|
1057 } else { |
|
1058 if ((res = mp_init_copy (&t, b)) != MP_OKAY) { |
|
1059 return res; |
|
1060 } |
|
1061 px = a->used; |
|
1062 x = a; |
|
1063 } |
|
1064 |
|
1065 for (ix = 0; ix < px; ix++) { |
|
1066 t.dp[ix] &= x->dp[ix]; |
|
1067 } |
|
1068 |
|
1069 /* zero digits above the last from the smallest mp_int */ |
|
1070 for (; ix < t.used; ix++) { |
|
1071 t.dp[ix] = 0; |
|
1072 } |
|
1073 |
|
1074 mp_clamp (&t); |
|
1075 mp_exch (c, &t); |
|
1076 mp_clear (&t); |
|
1077 return MP_OKAY; |
|
1078 } |
|
1079 |
|
1080 /* End: bn_mp_and.c */ |
|
1081 |
|
1082 /* Start: bn_mp_clamp.c */ |
|
1083 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
1084 * |
|
1085 * LibTomMath is a library that provides multiple-precision |
|
1086 * integer arithmetic as well as number theoretic functionality. |
|
1087 * |
|
1088 * The library was designed directly after the MPI library by |
|
1089 * Michael Fromberger but has been written from scratch with |
|
1090 * additional optimizations in place. |
|
1091 * |
|
1092 * The library is free for all purposes without any express |
|
1093 * guarantee it works. |
|
1094 * |
|
1095 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
1096 */ |
15
|
1097 #include <ltc_tommath.h> |
3
|
1098 |
|
1099 /* trim unused digits |
|
1100 * |
|
1101 * This is used to ensure that leading zero digits are |
|
1102 * trimed and the leading "used" digit will be non-zero |
|
1103 * Typically very fast. Also fixes the sign if there |
|
1104 * are no more leading digits |
|
1105 */ |
|
1106 void |
|
1107 mp_clamp (mp_int * a) |
|
1108 { |
|
1109 /* decrease used while the most significant digit is |
|
1110 * zero. |
|
1111 */ |
|
1112 while (a->used > 0 && a->dp[a->used - 1] == 0) { |
|
1113 --(a->used); |
|
1114 } |
|
1115 |
|
1116 /* reset the sign flag if used == 0 */ |
|
1117 if (a->used == 0) { |
|
1118 a->sign = MP_ZPOS; |
|
1119 } |
|
1120 } |
|
1121 |
|
1122 /* End: bn_mp_clamp.c */ |
|
1123 |
|
1124 /* Start: bn_mp_clear.c */ |
|
1125 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
1126 * |
|
1127 * LibTomMath is a library that provides multiple-precision |
|
1128 * integer arithmetic as well as number theoretic functionality. |
|
1129 * |
|
1130 * The library was designed directly after the MPI library by |
|
1131 * Michael Fromberger but has been written from scratch with |
|
1132 * additional optimizations in place. |
|
1133 * |
|
1134 * The library is free for all purposes without any express |
|
1135 * guarantee it works. |
|
1136 * |
|
1137 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
1138 */ |
15
|
1139 #include <ltc_tommath.h> |
3
|
1140 |
|
1141 /* clear one (frees) */ |
|
1142 void |
|
1143 mp_clear (mp_int * a) |
|
1144 { |
|
1145 /* only do anything if a hasn't been freed previously */ |
|
1146 if (a->dp != NULL) { |
|
1147 /* first zero the digits */ |
|
1148 memset (a->dp, 0, sizeof (mp_digit) * a->used); |
|
1149 |
|
1150 /* free ram */ |
|
1151 XFREE(a->dp); |
|
1152 |
|
1153 /* reset members to make debugging easier */ |
|
1154 a->dp = NULL; |
|
1155 a->alloc = a->used = 0; |
|
1156 a->sign = MP_ZPOS; |
|
1157 } |
|
1158 } |
|
1159 |
|
1160 /* End: bn_mp_clear.c */ |
|
1161 |
|
1162 /* Start: bn_mp_clear_multi.c */ |
|
1163 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
1164 * |
|
1165 * LibTomMath is a library that provides multiple-precision |
|
1166 * integer arithmetic as well as number theoretic functionality. |
|
1167 * |
|
1168 * The library was designed directly after the MPI library by |
|
1169 * Michael Fromberger but has been written from scratch with |
|
1170 * additional optimizations in place. |
|
1171 * |
|
1172 * The library is free for all purposes without any express |
|
1173 * guarantee it works. |
|
1174 * |
|
1175 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
1176 */ |
15
|
1177 #include <ltc_tommath.h> |
3
|
1178 #include <stdarg.h> |
|
1179 |
|
1180 void mp_clear_multi(mp_int *mp, ...) |
|
1181 { |
|
1182 mp_int* next_mp = mp; |
|
1183 va_list args; |
|
1184 va_start(args, mp); |
|
1185 while (next_mp != NULL) { |
|
1186 mp_clear(next_mp); |
|
1187 next_mp = va_arg(args, mp_int*); |
|
1188 } |
|
1189 va_end(args); |
|
1190 } |
|
1191 |
|
1192 /* End: bn_mp_clear_multi.c */ |
|
1193 |
|
1194 /* Start: bn_mp_cmp.c */ |
|
1195 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
1196 * |
|
1197 * LibTomMath is a library that provides multiple-precision |
|
1198 * integer arithmetic as well as number theoretic functionality. |
|
1199 * |
|
1200 * The library was designed directly after the MPI library by |
|
1201 * Michael Fromberger but has been written from scratch with |
|
1202 * additional optimizations in place. |
|
1203 * |
|
1204 * The library is free for all purposes without any express |
|
1205 * guarantee it works. |
|
1206 * |
|
1207 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
1208 */ |
15
|
1209 #include <ltc_tommath.h> |
3
|
1210 |
|
1211 /* compare two ints (signed)*/ |
|
1212 int |
|
1213 mp_cmp (mp_int * a, mp_int * b) |
|
1214 { |
|
1215 /* compare based on sign */ |
|
1216 if (a->sign != b->sign) { |
|
1217 if (a->sign == MP_NEG) { |
|
1218 return MP_LT; |
|
1219 } else { |
|
1220 return MP_GT; |
|
1221 } |
|
1222 } |
|
1223 |
|
1224 /* compare digits */ |
|
1225 if (a->sign == MP_NEG) { |
|
1226 /* if negative compare opposite direction */ |
|
1227 return mp_cmp_mag(b, a); |
|
1228 } else { |
|
1229 return mp_cmp_mag(a, b); |
|
1230 } |
|
1231 } |
|
1232 |
|
1233 /* End: bn_mp_cmp.c */ |
|
1234 |
|
1235 /* Start: bn_mp_cmp_d.c */ |
|
1236 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
1237 * |
|
1238 * LibTomMath is a library that provides multiple-precision |
|
1239 * integer arithmetic as well as number theoretic functionality. |
|
1240 * |
|
1241 * The library was designed directly after the MPI library by |
|
1242 * Michael Fromberger but has been written from scratch with |
|
1243 * additional optimizations in place. |
|
1244 * |
|
1245 * The library is free for all purposes without any express |
|
1246 * guarantee it works. |
|
1247 * |
|
1248 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
1249 */ |
15
|
1250 #include <ltc_tommath.h> |
3
|
1251 |
|
1252 /* compare a digit */ |
|
1253 int mp_cmp_d(mp_int * a, mp_digit b) |
|
1254 { |
|
1255 /* compare based on sign */ |
|
1256 if (a->sign == MP_NEG) { |
|
1257 return MP_LT; |
|
1258 } |
|
1259 |
|
1260 /* compare based on magnitude */ |
|
1261 if (a->used > 1) { |
|
1262 return MP_GT; |
|
1263 } |
|
1264 |
|
1265 /* compare the only digit of a to b */ |
|
1266 if (a->dp[0] > b) { |
|
1267 return MP_GT; |
|
1268 } else if (a->dp[0] < b) { |
|
1269 return MP_LT; |
|
1270 } else { |
|
1271 return MP_EQ; |
|
1272 } |
|
1273 } |
|
1274 |
|
1275 /* End: bn_mp_cmp_d.c */ |
|
1276 |
|
1277 /* Start: bn_mp_cmp_mag.c */ |
|
1278 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
1279 * |
|
1280 * LibTomMath is a library that provides multiple-precision |
|
1281 * integer arithmetic as well as number theoretic functionality. |
|
1282 * |
|
1283 * The library was designed directly after the MPI library by |
|
1284 * Michael Fromberger but has been written from scratch with |
|
1285 * additional optimizations in place. |
|
1286 * |
|
1287 * The library is free for all purposes without any express |
|
1288 * guarantee it works. |
|
1289 * |
|
1290 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
1291 */ |
15
|
1292 #include <ltc_tommath.h> |
3
|
1293 |
|
1294 /* compare maginitude of two ints (unsigned) */ |
|
1295 int mp_cmp_mag (mp_int * a, mp_int * b) |
|
1296 { |
|
1297 int n; |
|
1298 mp_digit *tmpa, *tmpb; |
|
1299 |
|
1300 /* compare based on # of non-zero digits */ |
|
1301 if (a->used > b->used) { |
|
1302 return MP_GT; |
|
1303 } |
|
1304 |
|
1305 if (a->used < b->used) { |
|
1306 return MP_LT; |
|
1307 } |
|
1308 |
|
1309 /* alias for a */ |
|
1310 tmpa = a->dp + (a->used - 1); |
|
1311 |
|
1312 /* alias for b */ |
|
1313 tmpb = b->dp + (a->used - 1); |
|
1314 |
|
1315 /* compare based on digits */ |
|
1316 for (n = 0; n < a->used; ++n, --tmpa, --tmpb) { |
|
1317 if (*tmpa > *tmpb) { |
|
1318 return MP_GT; |
|
1319 } |
|
1320 |
|
1321 if (*tmpa < *tmpb) { |
|
1322 return MP_LT; |
|
1323 } |
|
1324 } |
|
1325 return MP_EQ; |
|
1326 } |
|
1327 |
|
1328 /* End: bn_mp_cmp_mag.c */ |
|
1329 |
|
1330 /* Start: bn_mp_cnt_lsb.c */ |
|
1331 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
1332 * |
|
1333 * LibTomMath is a library that provides multiple-precision |
|
1334 * integer arithmetic as well as number theoretic functionality. |
|
1335 * |
|
1336 * The library was designed directly after the MPI library by |
|
1337 * Michael Fromberger but has been written from scratch with |
|
1338 * additional optimizations in place. |
|
1339 * |
|
1340 * The library is free for all purposes without any express |
|
1341 * guarantee it works. |
|
1342 * |
|
1343 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
1344 */ |
15
|
1345 #include <ltc_tommath.h> |
3
|
1346 |
|
1347 static const int lnz[16] = { |
|
1348 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 |
|
1349 }; |
|
1350 |
|
1351 /* Counts the number of lsbs which are zero before the first zero bit */ |
|
1352 int mp_cnt_lsb(mp_int *a) |
|
1353 { |
|
1354 int x; |
|
1355 mp_digit q, qq; |
|
1356 |
|
1357 /* easy out */ |
|
1358 if (mp_iszero(a) == 1) { |
|
1359 return 0; |
|
1360 } |
|
1361 |
|
1362 /* scan lower digits until non-zero */ |
|
1363 for (x = 0; x < a->used && a->dp[x] == 0; x++); |
|
1364 q = a->dp[x]; |
|
1365 x *= DIGIT_BIT; |
|
1366 |
|
1367 /* now scan this digit until a 1 is found */ |
|
1368 if ((q & 1) == 0) { |
|
1369 do { |
|
1370 qq = q & 15; |
|
1371 x += lnz[qq]; |
|
1372 q >>= 4; |
|
1373 } while (qq == 0); |
|
1374 } |
|
1375 return x; |
|
1376 } |
|
1377 |
|
1378 |
|
1379 /* End: bn_mp_cnt_lsb.c */ |
|
1380 |
|
1381 /* Start: bn_mp_copy.c */ |
|
1382 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
1383 * |
|
1384 * LibTomMath is a library that provides multiple-precision |
|
1385 * integer arithmetic as well as number theoretic functionality. |
|
1386 * |
|
1387 * The library was designed directly after the MPI library by |
|
1388 * Michael Fromberger but has been written from scratch with |
|
1389 * additional optimizations in place. |
|
1390 * |
|
1391 * The library is free for all purposes without any express |
|
1392 * guarantee it works. |
|
1393 * |
|
1394 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
1395 */ |
15
|
1396 #include <ltc_tommath.h> |
3
|
1397 |
|
1398 /* copy, b = a */ |
|
1399 int |
|
1400 mp_copy (mp_int * a, mp_int * b) |
|
1401 { |
|
1402 int res, n; |
|
1403 |
|
1404 /* if dst == src do nothing */ |
|
1405 if (a == b) { |
|
1406 return MP_OKAY; |
|
1407 } |
|
1408 |
|
1409 /* grow dest */ |
|
1410 if (b->alloc < a->used) { |
|
1411 if ((res = mp_grow (b, a->used)) != MP_OKAY) { |
|
1412 return res; |
|
1413 } |
|
1414 } |
|
1415 |
|
1416 /* zero b and copy the parameters over */ |
|
1417 { |
|
1418 register mp_digit *tmpa, *tmpb; |
|
1419 |
|
1420 /* pointer aliases */ |
|
1421 |
|
1422 /* source */ |
|
1423 tmpa = a->dp; |
|
1424 |
|
1425 /* destination */ |
|
1426 tmpb = b->dp; |
|
1427 |
|
1428 /* copy all the digits */ |
|
1429 for (n = 0; n < a->used; n++) { |
|
1430 *tmpb++ = *tmpa++; |
|
1431 } |
|
1432 |
|
1433 /* clear high digits */ |
|
1434 for (; n < b->used; n++) { |
|
1435 *tmpb++ = 0; |
|
1436 } |
|
1437 } |
|
1438 |
|
1439 /* copy used count and sign */ |
|
1440 b->used = a->used; |
|
1441 b->sign = a->sign; |
|
1442 return MP_OKAY; |
|
1443 } |
|
1444 |
|
1445 /* End: bn_mp_copy.c */ |
|
1446 |
|
1447 /* Start: bn_mp_count_bits.c */ |
|
1448 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
1449 * |
|
1450 * LibTomMath is a library that provides multiple-precision |
|
1451 * integer arithmetic as well as number theoretic functionality. |
|
1452 * |
|
1453 * The library was designed directly after the MPI library by |
|
1454 * Michael Fromberger but has been written from scratch with |
|
1455 * additional optimizations in place. |
|
1456 * |
|
1457 * The library is free for all purposes without any express |
|
1458 * guarantee it works. |
|
1459 * |
|
1460 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
1461 */ |
15
|
1462 #include <ltc_tommath.h> |
3
|
1463 |
|
1464 /* returns the number of bits in an int */ |
|
1465 int |
|
1466 mp_count_bits (mp_int * a) |
|
1467 { |
|
1468 int r; |
|
1469 mp_digit q; |
|
1470 |
|
1471 /* shortcut */ |
|
1472 if (a->used == 0) { |
|
1473 return 0; |
|
1474 } |
|
1475 |
|
1476 /* get number of digits and add that */ |
|
1477 r = (a->used - 1) * DIGIT_BIT; |
|
1478 |
|
1479 /* take the last digit and count the bits in it */ |
|
1480 q = a->dp[a->used - 1]; |
|
1481 while (q > ((mp_digit) 0)) { |
|
1482 ++r; |
|
1483 q >>= ((mp_digit) 1); |
|
1484 } |
|
1485 return r; |
|
1486 } |
|
1487 |
|
1488 /* End: bn_mp_count_bits.c */ |
|
1489 |
|
1490 /* Start: bn_mp_div.c */ |
|
1491 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
1492 * |
|
1493 * LibTomMath is a library that provides multiple-precision |
|
1494 * integer arithmetic as well as number theoretic functionality. |
|
1495 * |
|
1496 * The library was designed directly after the MPI library by |
|
1497 * Michael Fromberger but has been written from scratch with |
|
1498 * additional optimizations in place. |
|
1499 * |
|
1500 * The library is free for all purposes without any express |
|
1501 * guarantee it works. |
|
1502 * |
|
1503 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
1504 */ |
15
|
1505 #include <ltc_tommath.h> |
3
|
1506 |
|
1507 /* integer signed division. |
|
1508 * c*b + d == a [e.g. a/b, c=quotient, d=remainder] |
|
1509 * HAC pp.598 Algorithm 14.20 |
|
1510 * |
|
1511 * Note that the description in HAC is horribly |
|
1512 * incomplete. For example, it doesn't consider |
|
1513 * the case where digits are removed from 'x' in |
|
1514 * the inner loop. It also doesn't consider the |
|
1515 * case that y has fewer than three digits, etc.. |
|
1516 * |
|
1517 * The overall algorithm is as described as |
|
1518 * 14.20 from HAC but fixed to treat these cases. |
|
1519 */ |
|
1520 int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d) |
|
1521 { |
|
1522 mp_int q, x, y, t1, t2; |
|
1523 int res, n, t, i, norm, neg; |
|
1524 |
|
1525 /* is divisor zero ? */ |
|
1526 if (mp_iszero (b) == 1) { |
|
1527 return MP_VAL; |
|
1528 } |
|
1529 |
|
1530 /* if a < b then q=0, r = a */ |
|
1531 if (mp_cmp_mag (a, b) == MP_LT) { |
|
1532 if (d != NULL) { |
|
1533 res = mp_copy (a, d); |
|
1534 } else { |
|
1535 res = MP_OKAY; |
|
1536 } |
|
1537 if (c != NULL) { |
|
1538 mp_zero (c); |
|
1539 } |
|
1540 return res; |
|
1541 } |
|
1542 |
|
1543 if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) { |
|
1544 return res; |
|
1545 } |
|
1546 q.used = a->used + 2; |
|
1547 |
|
1548 if ((res = mp_init (&t1)) != MP_OKAY) { |
|
1549 goto __Q; |
|
1550 } |
|
1551 |
|
1552 if ((res = mp_init (&t2)) != MP_OKAY) { |
|
1553 goto __T1; |
|
1554 } |
|
1555 |
|
1556 if ((res = mp_init_copy (&x, a)) != MP_OKAY) { |
|
1557 goto __T2; |
|
1558 } |
|
1559 |
|
1560 if ((res = mp_init_copy (&y, b)) != MP_OKAY) { |
|
1561 goto __X; |
|
1562 } |
|
1563 |
|
1564 /* fix the sign */ |
|
1565 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; |
|
1566 x.sign = y.sign = MP_ZPOS; |
|
1567 |
|
1568 /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */ |
|
1569 norm = mp_count_bits(&y) % DIGIT_BIT; |
|
1570 if (norm < (int)(DIGIT_BIT-1)) { |
|
1571 norm = (DIGIT_BIT-1) - norm; |
|
1572 if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) { |
|
1573 goto __Y; |
|
1574 } |
|
1575 if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) { |
|
1576 goto __Y; |
|
1577 } |
|
1578 } else { |
|
1579 norm = 0; |
|
1580 } |
|
1581 |
|
1582 /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */ |
|
1583 n = x.used - 1; |
|
1584 t = y.used - 1; |
|
1585 |
|
1586 /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ |
|
1587 if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */ |
|
1588 goto __Y; |
|
1589 } |
|
1590 |
|
1591 while (mp_cmp (&x, &y) != MP_LT) { |
|
1592 ++(q.dp[n - t]); |
|
1593 if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) { |
|
1594 goto __Y; |
|
1595 } |
|
1596 } |
|
1597 |
|
1598 /* reset y by shifting it back down */ |
|
1599 mp_rshd (&y, n - t); |
|
1600 |
|
1601 /* step 3. for i from n down to (t + 1) */ |
|
1602 for (i = n; i >= (t + 1); i--) { |
|
1603 if (i > x.used) { |
|
1604 continue; |
|
1605 } |
|
1606 |
|
1607 /* step 3.1 if xi == yt then set q{i-t-1} to b-1, |
|
1608 * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ |
|
1609 if (x.dp[i] == y.dp[t]) { |
|
1610 q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1); |
|
1611 } else { |
|
1612 mp_word tmp; |
|
1613 tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT); |
|
1614 tmp |= ((mp_word) x.dp[i - 1]); |
|
1615 tmp /= ((mp_word) y.dp[t]); |
|
1616 if (tmp > (mp_word) MP_MASK) |
|
1617 tmp = MP_MASK; |
|
1618 q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK)); |
|
1619 } |
|
1620 |
|
1621 /* while (q{i-t-1} * (yt * b + y{t-1})) > |
|
1622 xi * b**2 + xi-1 * b + xi-2 |
|
1623 |
|
1624 do q{i-t-1} -= 1; |
|
1625 */ |
|
1626 q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK; |
|
1627 do { |
|
1628 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK; |
|
1629 |
|
1630 /* find left hand */ |
|
1631 mp_zero (&t1); |
|
1632 t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1]; |
|
1633 t1.dp[1] = y.dp[t]; |
|
1634 t1.used = 2; |
|
1635 if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) { |
|
1636 goto __Y; |
|
1637 } |
|
1638 |
|
1639 /* find right hand */ |
|
1640 t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2]; |
|
1641 t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1]; |
|
1642 t2.dp[2] = x.dp[i]; |
|
1643 t2.used = 3; |
|
1644 } while (mp_cmp_mag(&t1, &t2) == MP_GT); |
|
1645 |
|
1646 /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ |
|
1647 if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) { |
|
1648 goto __Y; |
|
1649 } |
|
1650 |
|
1651 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { |
|
1652 goto __Y; |
|
1653 } |
|
1654 |
|
1655 if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) { |
|
1656 goto __Y; |
|
1657 } |
|
1658 |
|
1659 /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ |
|
1660 if (x.sign == MP_NEG) { |
|
1661 if ((res = mp_copy (&y, &t1)) != MP_OKAY) { |
|
1662 goto __Y; |
|
1663 } |
|
1664 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { |
|
1665 goto __Y; |
|
1666 } |
|
1667 if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) { |
|
1668 goto __Y; |
|
1669 } |
|
1670 |
|
1671 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK; |
|
1672 } |
|
1673 } |
|
1674 |
|
1675 /* now q is the quotient and x is the remainder |
|
1676 * [which we have to normalize] |
|
1677 */ |
|
1678 |
|
1679 /* get sign before writing to c */ |
|
1680 x.sign = a->sign; |
|
1681 |
|
1682 if (c != NULL) { |
|
1683 mp_clamp (&q); |
|
1684 mp_exch (&q, c); |
|
1685 c->sign = neg; |
|
1686 } |
|
1687 |
|
1688 if (d != NULL) { |
|
1689 mp_div_2d (&x, norm, &x, NULL); |
|
1690 mp_exch (&x, d); |
|
1691 } |
|
1692 |
|
1693 res = MP_OKAY; |
|
1694 |
|
1695 __Y:mp_clear (&y); |
|
1696 __X:mp_clear (&x); |
|
1697 __T2:mp_clear (&t2); |
|
1698 __T1:mp_clear (&t1); |
|
1699 __Q:mp_clear (&q); |
|
1700 return res; |
|
1701 } |
|
1702 |
|
1703 /* End: bn_mp_div.c */ |
|
1704 |
|
1705 /* Start: bn_mp_div_2.c */ |
|
1706 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
1707 * |
|
1708 * LibTomMath is a library that provides multiple-precision |
|
1709 * integer arithmetic as well as number theoretic functionality. |
|
1710 * |
|
1711 * The library was designed directly after the MPI library by |
|
1712 * Michael Fromberger but has been written from scratch with |
|
1713 * additional optimizations in place. |
|
1714 * |
|
1715 * The library is free for all purposes without any express |
|
1716 * guarantee it works. |
|
1717 * |
|
1718 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
1719 */ |
15
|
1720 #include <ltc_tommath.h> |
3
|
1721 |
|
1722 /* b = a/2 */ |
|
1723 int mp_div_2(mp_int * a, mp_int * b) |
|
1724 { |
|
1725 int x, res, oldused; |
|
1726 |
|
1727 /* copy */ |
|
1728 if (b->alloc < a->used) { |
|
1729 if ((res = mp_grow (b, a->used)) != MP_OKAY) { |
|
1730 return res; |
|
1731 } |
|
1732 } |
|
1733 |
|
1734 oldused = b->used; |
|
1735 b->used = a->used; |
|
1736 { |
|
1737 register mp_digit r, rr, *tmpa, *tmpb; |
|
1738 |
|
1739 /* source alias */ |
|
1740 tmpa = a->dp + b->used - 1; |
|
1741 |
|
1742 /* dest alias */ |
|
1743 tmpb = b->dp + b->used - 1; |
|
1744 |
|
1745 /* carry */ |
|
1746 r = 0; |
|
1747 for (x = b->used - 1; x >= 0; x--) { |
|
1748 /* get the carry for the next iteration */ |
|
1749 rr = *tmpa & 1; |
|
1750 |
|
1751 /* shift the current digit, add in carry and store */ |
|
1752 *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1)); |
|
1753 |
|
1754 /* forward carry to next iteration */ |
|
1755 r = rr; |
|
1756 } |
|
1757 |
|
1758 /* zero excess digits */ |
|
1759 tmpb = b->dp + b->used; |
|
1760 for (x = b->used; x < oldused; x++) { |
|
1761 *tmpb++ = 0; |
|
1762 } |
|
1763 } |
|
1764 b->sign = a->sign; |
|
1765 mp_clamp (b); |
|
1766 return MP_OKAY; |
|
1767 } |
|
1768 |
|
1769 /* End: bn_mp_div_2.c */ |
|
1770 |
|
1771 /* Start: bn_mp_div_2d.c */ |
|
1772 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
1773 * |
|
1774 * LibTomMath is a library that provides multiple-precision |
|
1775 * integer arithmetic as well as number theoretic functionality. |
|
1776 * |
|
1777 * The library was designed directly after the MPI library by |
|
1778 * Michael Fromberger but has been written from scratch with |
|
1779 * additional optimizations in place. |
|
1780 * |
|
1781 * The library is free for all purposes without any express |
|
1782 * guarantee it works. |
|
1783 * |
|
1784 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
1785 */ |
15
|
1786 #include <ltc_tommath.h> |
3
|
1787 |
|
1788 /* shift right by a certain bit count (store quotient in c, optional remainder in d) */ |
|
1789 int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d) |
|
1790 { |
|
1791 mp_digit D, r, rr; |
|
1792 int x, res; |
|
1793 mp_int t; |
|
1794 |
|
1795 |
|
1796 /* if the shift count is <= 0 then we do no work */ |
|
1797 if (b <= 0) { |
|
1798 res = mp_copy (a, c); |
|
1799 if (d != NULL) { |
|
1800 mp_zero (d); |
|
1801 } |
|
1802 return res; |
|
1803 } |
|
1804 |
|
1805 if ((res = mp_init (&t)) != MP_OKAY) { |
|
1806 return res; |
|
1807 } |
|
1808 |
|
1809 /* get the remainder */ |
|
1810 if (d != NULL) { |
|
1811 if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) { |
|
1812 mp_clear (&t); |
|
1813 return res; |
|
1814 } |
|
1815 } |
|
1816 |
|
1817 /* copy */ |
|
1818 if ((res = mp_copy (a, c)) != MP_OKAY) { |
|
1819 mp_clear (&t); |
|
1820 return res; |
|
1821 } |
|
1822 |
|
1823 /* shift by as many digits in the bit count */ |
|
1824 if (b >= (int)DIGIT_BIT) { |
|
1825 mp_rshd (c, b / DIGIT_BIT); |
|
1826 } |
|
1827 |
|
1828 /* shift any bit count < DIGIT_BIT */ |
|
1829 D = (mp_digit) (b % DIGIT_BIT); |
|
1830 if (D != 0) { |
|
1831 register mp_digit *tmpc, mask, shift; |
|
1832 |
|
1833 /* mask */ |
|
1834 mask = (((mp_digit)1) << D) - 1; |
|
1835 |
|
1836 /* shift for lsb */ |
|
1837 shift = DIGIT_BIT - D; |
|
1838 |
|
1839 /* alias */ |
|
1840 tmpc = c->dp + (c->used - 1); |
|
1841 |
|
1842 /* carry */ |
|
1843 r = 0; |
|
1844 for (x = c->used - 1; x >= 0; x--) { |
|
1845 /* get the lower bits of this word in a temp */ |
|
1846 rr = *tmpc & mask; |
|
1847 |
|
1848 /* shift the current word and mix in the carry bits from the previous word */ |
|
1849 *tmpc = (*tmpc >> D) | (r << shift); |
|
1850 --tmpc; |
|
1851 |
|
1852 /* set the carry to the carry bits of the current word found above */ |
|
1853 r = rr; |
|
1854 } |
|
1855 } |
|
1856 mp_clamp (c); |
|
1857 if (d != NULL) { |
|
1858 mp_exch (&t, d); |
|
1859 } |
|
1860 mp_clear (&t); |
|
1861 return MP_OKAY; |
|
1862 } |
|
1863 |
|
1864 /* End: bn_mp_div_2d.c */ |
|
1865 |
|
1866 /* Start: bn_mp_div_3.c */ |
|
1867 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
1868 * |
|
1869 * LibTomMath is a library that provides multiple-precision |
|
1870 * integer arithmetic as well as number theoretic functionality. |
|
1871 * |
|
1872 * The library was designed directly after the MPI library by |
|
1873 * Michael Fromberger but has been written from scratch with |
|
1874 * additional optimizations in place. |
|
1875 * |
|
1876 * The library is free for all purposes without any express |
|
1877 * guarantee it works. |
|
1878 * |
|
1879 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
1880 */ |
15
|
1881 #include <ltc_tommath.h> |
3
|
1882 |
|
1883 /* divide by three (based on routine from MPI and the GMP manual) */ |
|
1884 int |
|
1885 mp_div_3 (mp_int * a, mp_int *c, mp_digit * d) |
|
1886 { |
|
1887 mp_int q; |
|
1888 mp_word w, t; |
|
1889 mp_digit b; |
|
1890 int res, ix; |
|
1891 |
|
1892 /* b = 2**DIGIT_BIT / 3 */ |
|
1893 b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3); |
|
1894 |
|
1895 if ((res = mp_init_size(&q, a->used)) != MP_OKAY) { |
|
1896 return res; |
|
1897 } |
|
1898 |
|
1899 q.used = a->used; |
|
1900 q.sign = a->sign; |
|
1901 w = 0; |
|
1902 for (ix = a->used - 1; ix >= 0; ix--) { |
|
1903 w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]); |
|
1904 |
|
1905 if (w >= 3) { |
|
1906 /* multiply w by [1/3] */ |
|
1907 t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT); |
|
1908 |
|
1909 /* now subtract 3 * [w/3] from w, to get the remainder */ |
|
1910 w -= t+t+t; |
|
1911 |
|
1912 /* fixup the remainder as required since |
|
1913 * the optimization is not exact. |
|
1914 */ |
|
1915 while (w >= 3) { |
|
1916 t += 1; |
|
1917 w -= 3; |
|
1918 } |
|
1919 } else { |
|
1920 t = 0; |
|
1921 } |
|
1922 q.dp[ix] = (mp_digit)t; |
|
1923 } |
|
1924 |
|
1925 /* [optional] store the remainder */ |
|
1926 if (d != NULL) { |
|
1927 *d = (mp_digit)w; |
|
1928 } |
|
1929 |
|
1930 /* [optional] store the quotient */ |
|
1931 if (c != NULL) { |
|
1932 mp_clamp(&q); |
|
1933 mp_exch(&q, c); |
|
1934 } |
|
1935 mp_clear(&q); |
|
1936 |
|
1937 return res; |
|
1938 } |
|
1939 |
|
1940 |
|
1941 /* End: bn_mp_div_3.c */ |
|
1942 |
|
1943 /* Start: bn_mp_div_d.c */ |
|
1944 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
1945 * |
|
1946 * LibTomMath is a library that provides multiple-precision |
|
1947 * integer arithmetic as well as number theoretic functionality. |
|
1948 * |
|
1949 * The library was designed directly after the MPI library by |
|
1950 * Michael Fromberger but has been written from scratch with |
|
1951 * additional optimizations in place. |
|
1952 * |
|
1953 * The library is free for all purposes without any express |
|
1954 * guarantee it works. |
|
1955 * |
|
1956 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
1957 */ |
15
|
1958 #include <ltc_tommath.h> |
3
|
1959 |
|
1960 static int s_is_power_of_two(mp_digit b, int *p) |
|
1961 { |
|
1962 int x; |
|
1963 |
|
1964 for (x = 1; x < DIGIT_BIT; x++) { |
|
1965 if (b == (((mp_digit)1)<<x)) { |
|
1966 *p = x; |
|
1967 return 1; |
|
1968 } |
|
1969 } |
|
1970 return 0; |
|
1971 } |
|
1972 |
|
1973 /* single digit division (based on routine from MPI) */ |
|
1974 int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d) |
|
1975 { |
|
1976 mp_int q; |
|
1977 mp_word w; |
|
1978 mp_digit t; |
|
1979 int res, ix; |
|
1980 |
|
1981 /* cannot divide by zero */ |
|
1982 if (b == 0) { |
|
1983 return MP_VAL; |
|
1984 } |
|
1985 |
|
1986 /* quick outs */ |
|
1987 if (b == 1 || mp_iszero(a) == 1) { |
|
1988 if (d != NULL) { |
|
1989 *d = 0; |
|
1990 } |
|
1991 if (c != NULL) { |
|
1992 return mp_copy(a, c); |
|
1993 } |
|
1994 return MP_OKAY; |
|
1995 } |
|
1996 |
|
1997 /* power of two ? */ |
|
1998 if (s_is_power_of_two(b, &ix) == 1) { |
|
1999 if (d != NULL) { |
|
2000 *d = a->dp[0] & ((1<<ix) - 1); |
|
2001 } |
|
2002 if (c != NULL) { |
|
2003 return mp_div_2d(a, ix, c, NULL); |
|
2004 } |
|
2005 return MP_OKAY; |
|
2006 } |
|
2007 |
|
2008 /* three? */ |
|
2009 if (b == 3) { |
|
2010 return mp_div_3(a, c, d); |
|
2011 } |
|
2012 |
|
2013 /* no easy answer [c'est la vie]. Just division */ |
|
2014 if ((res = mp_init_size(&q, a->used)) != MP_OKAY) { |
|
2015 return res; |
|
2016 } |
|
2017 |
|
2018 q.used = a->used; |
|
2019 q.sign = a->sign; |
|
2020 w = 0; |
|
2021 for (ix = a->used - 1; ix >= 0; ix--) { |
|
2022 w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]); |
|
2023 |
|
2024 if (w >= b) { |
|
2025 t = (mp_digit)(w / b); |
|
2026 w -= ((mp_word)t) * ((mp_word)b); |
|
2027 } else { |
|
2028 t = 0; |
|
2029 } |
|
2030 q.dp[ix] = (mp_digit)t; |
|
2031 } |
|
2032 |
|
2033 if (d != NULL) { |
|
2034 *d = (mp_digit)w; |
|
2035 } |
|
2036 |
|
2037 if (c != NULL) { |
|
2038 mp_clamp(&q); |
|
2039 mp_exch(&q, c); |
|
2040 } |
|
2041 mp_clear(&q); |
|
2042 |
|
2043 return res; |
|
2044 } |
|
2045 |
|
2046 |
|
2047 /* End: bn_mp_div_d.c */ |
|
2048 |
|
2049 /* Start: bn_mp_dr_is_modulus.c */ |
|
2050 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
2051 * |
|
2052 * LibTomMath is a library that provides multiple-precision |
|
2053 * integer arithmetic as well as number theoretic functionality. |
|
2054 * |
|
2055 * The library was designed directly after the MPI library by |
|
2056 * Michael Fromberger but has been written from scratch with |
|
2057 * additional optimizations in place. |
|
2058 * |
|
2059 * The library is free for all purposes without any express |
|
2060 * guarantee it works. |
|
2061 * |
|
2062 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
2063 */ |
15
|
2064 #include <ltc_tommath.h> |
3
|
2065 |
|
2066 /* determines if a number is a valid DR modulus */ |
|
2067 int mp_dr_is_modulus(mp_int *a) |
|
2068 { |
|
2069 int ix; |
|
2070 |
|
2071 /* must be at least two digits */ |
|
2072 if (a->used < 2) { |
|
2073 return 0; |
|
2074 } |
|
2075 |
|
2076 /* must be of the form b**k - a [a <= b] so all |
|
2077 * but the first digit must be equal to -1 (mod b). |
|
2078 */ |
|
2079 for (ix = 1; ix < a->used; ix++) { |
|
2080 if (a->dp[ix] != MP_MASK) { |
|
2081 return 0; |
|
2082 } |
|
2083 } |
|
2084 return 1; |
|
2085 } |
|
2086 |
|
2087 |
|
2088 /* End: bn_mp_dr_is_modulus.c */ |
|
2089 |
|
2090 /* Start: bn_mp_dr_reduce.c */ |
|
2091 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
2092 * |
|
2093 * LibTomMath is a library that provides multiple-precision |
|
2094 * integer arithmetic as well as number theoretic functionality. |
|
2095 * |
|
2096 * The library was designed directly after the MPI library by |
|
2097 * Michael Fromberger but has been written from scratch with |
|
2098 * additional optimizations in place. |
|
2099 * |
|
2100 * The library is free for all purposes without any express |
|
2101 * guarantee it works. |
|
2102 * |
|
2103 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
2104 */ |
15
|
2105 #include <ltc_tommath.h> |
3
|
2106 |
|
2107 /* reduce "x" in place modulo "n" using the Diminished Radix algorithm. |
|
2108 * |
|
2109 * Based on algorithm from the paper |
|
2110 * |
|
2111 * "Generating Efficient Primes for Discrete Log Cryptosystems" |
|
2112 * Chae Hoon Lim, Pil Loong Lee, |
|
2113 * POSTECH Information Research Laboratories |
|
2114 * |
|
2115 * The modulus must be of a special format [see manual] |
|
2116 * |
|
2117 * Has been modified to use algorithm 7.10 from the LTM book instead |
|
2118 * |
|
2119 * Input x must be in the range 0 <= x <= (n-1)**2 |
|
2120 */ |
|
2121 int |
|
2122 mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k) |
|
2123 { |
|
2124 int err, i, m; |
|
2125 mp_word r; |
|
2126 mp_digit mu, *tmpx1, *tmpx2; |
|
2127 |
|
2128 /* m = digits in modulus */ |
|
2129 m = n->used; |
|
2130 |
|
2131 /* ensure that "x" has at least 2m digits */ |
|
2132 if (x->alloc < m + m) { |
|
2133 if ((err = mp_grow (x, m + m)) != MP_OKAY) { |
|
2134 return err; |
|
2135 } |
|
2136 } |
|
2137 |
|
2138 /* top of loop, this is where the code resumes if |
|
2139 * another reduction pass is required. |
|
2140 */ |
|
2141 top: |
|
2142 /* aliases for digits */ |
|
2143 /* alias for lower half of x */ |
|
2144 tmpx1 = x->dp; |
|
2145 |
|
2146 /* alias for upper half of x, or x/B**m */ |
|
2147 tmpx2 = x->dp + m; |
|
2148 |
|
2149 /* set carry to zero */ |
|
2150 mu = 0; |
|
2151 |
|
2152 /* compute (x mod B**m) + k * [x/B**m] inline and inplace */ |
|
2153 for (i = 0; i < m; i++) { |
|
2154 r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu; |
|
2155 *tmpx1++ = (mp_digit)(r & MP_MASK); |
|
2156 mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT)); |
|
2157 } |
|
2158 |
|
2159 /* set final carry */ |
|
2160 *tmpx1++ = mu; |
|
2161 |
|
2162 /* zero words above m */ |
|
2163 for (i = m + 1; i < x->used; i++) { |
|
2164 *tmpx1++ = 0; |
|
2165 } |
|
2166 |
|
2167 /* clamp, sub and return */ |
|
2168 mp_clamp (x); |
|
2169 |
|
2170 /* if x >= n then subtract and reduce again |
|
2171 * Each successive "recursion" makes the input smaller and smaller. |
|
2172 */ |
|
2173 if (mp_cmp_mag (x, n) != MP_LT) { |
|
2174 s_mp_sub(x, n, x); |
|
2175 goto top; |
|
2176 } |
|
2177 return MP_OKAY; |
|
2178 } |
|
2179 |
|
2180 /* End: bn_mp_dr_reduce.c */ |
|
2181 |
|
2182 /* Start: bn_mp_dr_setup.c */ |
|
2183 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
2184 * |
|
2185 * LibTomMath is a library that provides multiple-precision |
|
2186 * integer arithmetic as well as number theoretic functionality. |
|
2187 * |
|
2188 * The library was designed directly after the MPI library by |
|
2189 * Michael Fromberger but has been written from scratch with |
|
2190 * additional optimizations in place. |
|
2191 * |
|
2192 * The library is free for all purposes without any express |
|
2193 * guarantee it works. |
|
2194 * |
|
2195 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
2196 */ |
15
|
2197 #include <ltc_tommath.h> |
3
|
2198 |
|
2199 /* determines the setup value */ |
|
2200 void mp_dr_setup(mp_int *a, mp_digit *d) |
|
2201 { |
|
2202 /* the casts are required if DIGIT_BIT is one less than |
|
2203 * the number of bits in a mp_digit [e.g. DIGIT_BIT==31] |
|
2204 */ |
|
2205 *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) - |
|
2206 ((mp_word)a->dp[0])); |
|
2207 } |
|
2208 |
|
2209 |
|
2210 /* End: bn_mp_dr_setup.c */ |
|
2211 |
|
2212 /* Start: bn_mp_exch.c */ |
|
2213 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
2214 * |
|
2215 * LibTomMath is a library that provides multiple-precision |
|
2216 * integer arithmetic as well as number theoretic functionality. |
|
2217 * |
|
2218 * The library was designed directly after the MPI library by |
|
2219 * Michael Fromberger but has been written from scratch with |
|
2220 * additional optimizations in place. |
|
2221 * |
|
2222 * The library is free for all purposes without any express |
|
2223 * guarantee it works. |
|
2224 * |
|
2225 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
2226 */ |
15
|
2227 #include <ltc_tommath.h> |
3
|
2228 |
|
2229 /* swap the elements of two integers, for cases where you can't simply swap the |
|
2230 * mp_int pointers around |
|
2231 */ |
|
2232 void |
|
2233 mp_exch (mp_int * a, mp_int * b) |
|
2234 { |
|
2235 mp_int t; |
|
2236 |
|
2237 t = *a; |
|
2238 *a = *b; |
|
2239 *b = t; |
|
2240 } |
|
2241 |
|
2242 /* End: bn_mp_exch.c */ |
|
2243 |
|
2244 /* Start: bn_mp_expt_d.c */ |
|
2245 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
2246 * |
|
2247 * LibTomMath is a library that provides multiple-precision |
|
2248 * integer arithmetic as well as number theoretic functionality. |
|
2249 * |
|
2250 * The library was designed directly after the MPI library by |
|
2251 * Michael Fromberger but has been written from scratch with |
|
2252 * additional optimizations in place. |
|
2253 * |
|
2254 * The library is free for all purposes without any express |
|
2255 * guarantee it works. |
|
2256 * |
|
2257 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
2258 */ |
15
|
2259 #include <ltc_tommath.h> |
3
|
2260 |
|
2261 /* calculate c = a**b using a square-multiply algorithm */ |
|
2262 int mp_expt_d (mp_int * a, mp_digit b, mp_int * c) |
|
2263 { |
|
2264 int res, x; |
|
2265 mp_int g; |
|
2266 |
|
2267 if ((res = mp_init_copy (&g, a)) != MP_OKAY) { |
|
2268 return res; |
|
2269 } |
|
2270 |
|
2271 /* set initial result */ |
|
2272 mp_set (c, 1); |
|
2273 |
|
2274 for (x = 0; x < (int) DIGIT_BIT; x++) { |
|
2275 /* square */ |
|
2276 if ((res = mp_sqr (c, c)) != MP_OKAY) { |
|
2277 mp_clear (&g); |
|
2278 return res; |
|
2279 } |
|
2280 |
|
2281 /* if the bit is set multiply */ |
|
2282 if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) { |
|
2283 if ((res = mp_mul (c, &g, c)) != MP_OKAY) { |
|
2284 mp_clear (&g); |
|
2285 return res; |
|
2286 } |
|
2287 } |
|
2288 |
|
2289 /* shift to next bit */ |
|
2290 b <<= 1; |
|
2291 } |
|
2292 |
|
2293 mp_clear (&g); |
|
2294 return MP_OKAY; |
|
2295 } |
|
2296 |
|
2297 /* End: bn_mp_expt_d.c */ |
|
2298 |
|
2299 /* Start: bn_mp_exptmod.c */ |
|
2300 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
2301 * |
|
2302 * LibTomMath is a library that provides multiple-precision |
|
2303 * integer arithmetic as well as number theoretic functionality. |
|
2304 * |
|
2305 * The library was designed directly after the MPI library by |
|
2306 * Michael Fromberger but has been written from scratch with |
|
2307 * additional optimizations in place. |
|
2308 * |
|
2309 * The library is free for all purposes without any express |
|
2310 * guarantee it works. |
|
2311 * |
|
2312 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
2313 */ |
15
|
2314 #include <ltc_tommath.h> |
3
|
2315 |
|
2316 |
|
2317 /* this is a shell function that calls either the normal or Montgomery |
|
2318 * exptmod functions. Originally the call to the montgomery code was |
|
2319 * embedded in the normal function but that wasted alot of stack space |
|
2320 * for nothing (since 99% of the time the Montgomery code would be called) |
|
2321 */ |
|
2322 int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) |
|
2323 { |
|
2324 int dr; |
|
2325 |
|
2326 /* modulus P must be positive */ |
|
2327 if (P->sign == MP_NEG) { |
|
2328 return MP_VAL; |
|
2329 } |
|
2330 |
|
2331 /* if exponent X is negative we have to recurse */ |
|
2332 if (X->sign == MP_NEG) { |
|
2333 mp_int tmpG, tmpX; |
|
2334 int err; |
|
2335 |
|
2336 /* first compute 1/G mod P */ |
|
2337 if ((err = mp_init(&tmpG)) != MP_OKAY) { |
|
2338 return err; |
|
2339 } |
|
2340 if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { |
|
2341 mp_clear(&tmpG); |
|
2342 return err; |
|
2343 } |
|
2344 |
|
2345 /* now get |X| */ |
|
2346 if ((err = mp_init(&tmpX)) != MP_OKAY) { |
|
2347 mp_clear(&tmpG); |
|
2348 return err; |
|
2349 } |
|
2350 if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { |
|
2351 mp_clear_multi(&tmpG, &tmpX, NULL); |
|
2352 return err; |
|
2353 } |
|
2354 |
|
2355 /* and now compute (1/G)**|X| instead of G**X [X < 0] */ |
|
2356 err = mp_exptmod(&tmpG, &tmpX, P, Y); |
|
2357 mp_clear_multi(&tmpG, &tmpX, NULL); |
|
2358 return err; |
|
2359 } |
|
2360 |
|
2361 /* is it a DR modulus? */ |
|
2362 dr = mp_dr_is_modulus(P); |
|
2363 |
|
2364 /* if not, is it a uDR modulus? */ |
|
2365 if (dr == 0) { |
|
2366 dr = mp_reduce_is_2k(P) << 1; |
|
2367 } |
|
2368 |
|
2369 /* if the modulus is odd or dr != 0 use the fast method */ |
|
2370 if (mp_isodd (P) == 1 || dr != 0) { |
|
2371 return mp_exptmod_fast (G, X, P, Y, dr); |
|
2372 } else { |
|
2373 /* otherwise use the generic Barrett reduction technique */ |
|
2374 return s_mp_exptmod (G, X, P, Y); |
|
2375 } |
|
2376 } |
|
2377 |
|
2378 |
|
2379 /* End: bn_mp_exptmod.c */ |
|
2380 |
|
2381 /* Start: bn_mp_exptmod_fast.c */ |
|
2382 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
2383 * |
|
2384 * LibTomMath is a library that provides multiple-precision |
|
2385 * integer arithmetic as well as number theoretic functionality. |
|
2386 * |
|
2387 * The library was designed directly after the MPI library by |
|
2388 * Michael Fromberger but has been written from scratch with |
|
2389 * additional optimizations in place. |
|
2390 * |
|
2391 * The library is free for all purposes without any express |
|
2392 * guarantee it works. |
|
2393 * |
|
2394 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
2395 */ |
15
|
2396 #include <ltc_tommath.h> |
3
|
2397 |
|
2398 /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85 |
|
2399 * |
|
2400 * Uses a left-to-right k-ary sliding window to compute the modular exponentiation. |
|
2401 * The value of k changes based on the size of the exponent. |
|
2402 * |
|
2403 * Uses Montgomery or Diminished Radix reduction [whichever appropriate] |
|
2404 */ |
|
2405 |
|
2406 #ifdef MP_LOW_MEM |
|
2407 #define TAB_SIZE 32 |
|
2408 #else |
|
2409 #define TAB_SIZE 256 |
|
2410 #endif |
|
2411 |
|
2412 int |
|
2413 mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) |
|
2414 { |
|
2415 mp_int M[TAB_SIZE], res; |
|
2416 mp_digit buf, mp; |
|
2417 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; |
|
2418 |
|
2419 /* use a pointer to the reduction algorithm. This allows us to use |
|
2420 * one of many reduction algorithms without modding the guts of |
|
2421 * the code with if statements everywhere. |
|
2422 */ |
|
2423 int (*redux)(mp_int*,mp_int*,mp_digit); |
|
2424 |
|
2425 /* find window size */ |
|
2426 x = mp_count_bits (X); |
|
2427 if (x <= 7) { |
|
2428 winsize = 2; |
|
2429 } else if (x <= 36) { |
|
2430 winsize = 3; |
|
2431 } else if (x <= 140) { |
|
2432 winsize = 4; |
|
2433 } else if (x <= 450) { |
|
2434 winsize = 5; |
|
2435 } else if (x <= 1303) { |
|
2436 winsize = 6; |
|
2437 } else if (x <= 3529) { |
|
2438 winsize = 7; |
|
2439 } else { |
|
2440 winsize = 8; |
|
2441 } |
|
2442 |
|
2443 #ifdef MP_LOW_MEM |
|
2444 if (winsize > 5) { |
|
2445 winsize = 5; |
|
2446 } |
|
2447 #endif |
|
2448 |
|
2449 /* init M array */ |
|
2450 /* init first cell */ |
|
2451 if ((err = mp_init(&M[1])) != MP_OKAY) { |
|
2452 return err; |
|
2453 } |
|
2454 |
|
2455 /* now init the second half of the array */ |
|
2456 for (x = 1<<(winsize-1); x < (1 << winsize); x++) { |
|
2457 if ((err = mp_init(&M[x])) != MP_OKAY) { |
|
2458 for (y = 1<<(winsize-1); y < x; y++) { |
|
2459 mp_clear (&M[y]); |
|
2460 } |
|
2461 mp_clear(&M[1]); |
|
2462 return err; |
|
2463 } |
|
2464 } |
|
2465 |
|
2466 /* determine and setup reduction code */ |
|
2467 if (redmode == 0) { |
|
2468 /* now setup montgomery */ |
|
2469 if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) { |
|
2470 goto __M; |
|
2471 } |
|
2472 |
|
2473 /* automatically pick the comba one if available (saves quite a few calls/ifs) */ |
|
2474 if (((P->used * 2 + 1) < MP_WARRAY) && |
|
2475 P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { |
|
2476 redux = fast_mp_montgomery_reduce; |
|
2477 } else { |
|
2478 /* use slower baseline Montgomery method */ |
|
2479 redux = mp_montgomery_reduce; |
|
2480 } |
|
2481 } else if (redmode == 1) { |
|
2482 /* setup DR reduction for moduli of the form B**k - b */ |
|
2483 mp_dr_setup(P, &mp); |
|
2484 redux = mp_dr_reduce; |
|
2485 } else { |
|
2486 /* setup DR reduction for moduli of the form 2**k - b */ |
|
2487 if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) { |
|
2488 goto __M; |
|
2489 } |
|
2490 redux = mp_reduce_2k; |
|
2491 } |
|
2492 |
|
2493 /* setup result */ |
|
2494 if ((err = mp_init (&res)) != MP_OKAY) { |
|
2495 goto __M; |
|
2496 } |
|
2497 |
|
2498 /* create M table |
|
2499 * |
|
2500 * The M table contains powers of the input base, e.g. M[x] = G^x mod P |
|
2501 * |
|
2502 * The first half of the table is not computed though accept for M[0] and M[1] |
|
2503 */ |
|
2504 |
|
2505 if (redmode == 0) { |
|
2506 /* now we need R mod m */ |
|
2507 if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) { |
|
2508 goto __RES; |
|
2509 } |
|
2510 |
|
2511 /* now set M[1] to G * R mod m */ |
|
2512 if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) { |
|
2513 goto __RES; |
|
2514 } |
|
2515 } else { |
|
2516 mp_set(&res, 1); |
|
2517 if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) { |
|
2518 goto __RES; |
|
2519 } |
|
2520 } |
|
2521 |
|
2522 /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */ |
|
2523 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { |
|
2524 goto __RES; |
|
2525 } |
|
2526 |
|
2527 for (x = 0; x < (winsize - 1); x++) { |
|
2528 if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) { |
|
2529 goto __RES; |
|
2530 } |
|
2531 if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) { |
|
2532 goto __RES; |
|
2533 } |
|
2534 } |
|
2535 |
|
2536 /* create upper table */ |
|
2537 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { |
|
2538 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { |
|
2539 goto __RES; |
|
2540 } |
|
2541 if ((err = redux (&M[x], P, mp)) != MP_OKAY) { |
|
2542 goto __RES; |
|
2543 } |
|
2544 } |
|
2545 |
|
2546 /* set initial mode and bit cnt */ |
|
2547 mode = 0; |
|
2548 bitcnt = 1; |
|
2549 buf = 0; |
|
2550 digidx = X->used - 1; |
|
2551 bitcpy = 0; |
|
2552 bitbuf = 0; |
|
2553 |
|
2554 for (;;) { |
|
2555 /* grab next digit as required */ |
|
2556 if (--bitcnt == 0) { |
|
2557 /* if digidx == -1 we are out of digits so break */ |
|
2558 if (digidx == -1) { |
|
2559 break; |
|
2560 } |
|
2561 /* read next digit and reset bitcnt */ |
|
2562 buf = X->dp[digidx--]; |
|
2563 bitcnt = (int)DIGIT_BIT; |
|
2564 } |
|
2565 |
|
2566 /* grab the next msb from the exponent */ |
|
2567 y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1; |
|
2568 buf <<= (mp_digit)1; |
|
2569 |
|
2570 /* if the bit is zero and mode == 0 then we ignore it |
|
2571 * These represent the leading zero bits before the first 1 bit |
|
2572 * in the exponent. Technically this opt is not required but it |
|
2573 * does lower the # of trivial squaring/reductions used |
|
2574 */ |
|
2575 if (mode == 0 && y == 0) { |
|
2576 continue; |
|
2577 } |
|
2578 |
|
2579 /* if the bit is zero and mode == 1 then we square */ |
|
2580 if (mode == 1 && y == 0) { |
|
2581 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { |
|
2582 goto __RES; |
|
2583 } |
|
2584 if ((err = redux (&res, P, mp)) != MP_OKAY) { |
|
2585 goto __RES; |
|
2586 } |
|
2587 continue; |
|
2588 } |
|
2589 |
|
2590 /* else we add it to the window */ |
|
2591 bitbuf |= (y << (winsize - ++bitcpy)); |
|
2592 mode = 2; |
|
2593 |
|
2594 if (bitcpy == winsize) { |
|
2595 /* ok window is filled so square as required and multiply */ |
|
2596 /* square first */ |
|
2597 for (x = 0; x < winsize; x++) { |
|
2598 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { |
|
2599 goto __RES; |
|
2600 } |
|
2601 if ((err = redux (&res, P, mp)) != MP_OKAY) { |
|
2602 goto __RES; |
|
2603 } |
|
2604 } |
|
2605 |
|
2606 /* then multiply */ |
|
2607 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { |
|
2608 goto __RES; |
|
2609 } |
|
2610 if ((err = redux (&res, P, mp)) != MP_OKAY) { |
|
2611 goto __RES; |
|
2612 } |
|
2613 |
|
2614 /* empty window and reset */ |
|
2615 bitcpy = 0; |
|
2616 bitbuf = 0; |
|
2617 mode = 1; |
|
2618 } |
|
2619 } |
|
2620 |
|
2621 /* if bits remain then square/multiply */ |
|
2622 if (mode == 2 && bitcpy > 0) { |
|
2623 /* square then multiply if the bit is set */ |
|
2624 for (x = 0; x < bitcpy; x++) { |
|
2625 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { |
|
2626 goto __RES; |
|
2627 } |
|
2628 if ((err = redux (&res, P, mp)) != MP_OKAY) { |
|
2629 goto __RES; |
|
2630 } |
|
2631 |
|
2632 /* get next bit of the window */ |
|
2633 bitbuf <<= 1; |
|
2634 if ((bitbuf & (1 << winsize)) != 0) { |
|
2635 /* then multiply */ |
|
2636 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { |
|
2637 goto __RES; |
|
2638 } |
|
2639 if ((err = redux (&res, P, mp)) != MP_OKAY) { |
|
2640 goto __RES; |
|
2641 } |
|
2642 } |
|
2643 } |
|
2644 } |
|
2645 |
|
2646 if (redmode == 0) { |
|
2647 /* fixup result if Montgomery reduction is used |
|
2648 * recall that any value in a Montgomery system is |
|
2649 * actually multiplied by R mod n. So we have |
|
2650 * to reduce one more time to cancel out the factor |
|
2651 * of R. |
|
2652 */ |
|
2653 if ((err = mp_montgomery_reduce (&res, P, mp)) != MP_OKAY) { |
|
2654 goto __RES; |
|
2655 } |
|
2656 } |
|
2657 |
|
2658 /* swap res with Y */ |
|
2659 mp_exch (&res, Y); |
|
2660 err = MP_OKAY; |
|
2661 __RES:mp_clear (&res); |
|
2662 __M: |
|
2663 mp_clear(&M[1]); |
|
2664 for (x = 1<<(winsize-1); x < (1 << winsize); x++) { |
|
2665 mp_clear (&M[x]); |
|
2666 } |
|
2667 return err; |
|
2668 } |
|
2669 |
|
2670 /* End: bn_mp_exptmod_fast.c */ |
|
2671 |
|
2672 /* Start: bn_mp_exteuclid.c */ |
|
2673 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
2674 * |
|
2675 * LibTomMath is a library that provides multiple-precision |
|
2676 * integer arithmetic as well as number theoretic functionality. |
|
2677 * |
|
2678 * The library was designed directly after the MPI library by |
|
2679 * Michael Fromberger but has been written from scratch with |
|
2680 * additional optimizations in place. |
|
2681 * |
|
2682 * The library is free for all purposes without any express |
|
2683 * guarantee it works. |
|
2684 * |
|
2685 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
2686 */ |
15
|
2687 #include <ltc_tommath.h> |
3
|
2688 |
|
2689 /* Extended euclidean algorithm of (a, b) produces |
|
2690 a*u1 + b*u2 = u3 |
|
2691 */ |
|
2692 int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3) |
|
2693 { |
|
2694 mp_int u1,u2,u3,v1,v2,v3,t1,t2,t3,q,tmp; |
|
2695 int err; |
|
2696 |
|
2697 if ((err = mp_init_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL)) != MP_OKAY) { |
|
2698 return err; |
|
2699 } |
|
2700 |
|
2701 /* initialize, (u1,u2,u3) = (1,0,a) */ |
|
2702 mp_set(&u1, 1); |
|
2703 if ((err = mp_copy(a, &u3)) != MP_OKAY) { goto _ERR; } |
|
2704 |
|
2705 /* initialize, (v1,v2,v3) = (0,1,b) */ |
|
2706 mp_set(&v2, 1); |
|
2707 if ((err = mp_copy(b, &v3)) != MP_OKAY) { goto _ERR; } |
|
2708 |
|
2709 /* loop while v3 != 0 */ |
|
2710 while (mp_iszero(&v3) == MP_NO) { |
|
2711 /* q = u3/v3 */ |
|
2712 if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY) { goto _ERR; } |
|
2713 |
|
2714 /* (t1,t2,t3) = (u1,u2,u3) - (v1,v2,v3)q */ |
|
2715 if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY) { goto _ERR; } |
|
2716 if ((err = mp_sub(&u1, &tmp, &t1)) != MP_OKAY) { goto _ERR; } |
|
2717 if ((err = mp_mul(&v2, &q, &tmp)) != MP_OKAY) { goto _ERR; } |
|
2718 if ((err = mp_sub(&u2, &tmp, &t2)) != MP_OKAY) { goto _ERR; } |
|
2719 if ((err = mp_mul(&v3, &q, &tmp)) != MP_OKAY) { goto _ERR; } |
|
2720 if ((err = mp_sub(&u3, &tmp, &t3)) != MP_OKAY) { goto _ERR; } |
|
2721 |
|
2722 /* (u1,u2,u3) = (v1,v2,v3) */ |
|
2723 if ((err = mp_copy(&v1, &u1)) != MP_OKAY) { goto _ERR; } |
|
2724 if ((err = mp_copy(&v2, &u2)) != MP_OKAY) { goto _ERR; } |
|
2725 if ((err = mp_copy(&v3, &u3)) != MP_OKAY) { goto _ERR; } |
|
2726 |
|
2727 /* (v1,v2,v3) = (t1,t2,t3) */ |
|
2728 if ((err = mp_copy(&t1, &v1)) != MP_OKAY) { goto _ERR; } |
|
2729 if ((err = mp_copy(&t2, &v2)) != MP_OKAY) { goto _ERR; } |
|
2730 if ((err = mp_copy(&t3, &v3)) != MP_OKAY) { goto _ERR; } |
|
2731 } |
|
2732 |
|
2733 /* copy result out */ |
|
2734 if (U1 != NULL) { mp_exch(U1, &u1); } |
|
2735 if (U2 != NULL) { mp_exch(U2, &u2); } |
|
2736 if (U3 != NULL) { mp_exch(U3, &u3); } |
|
2737 |
|
2738 err = MP_OKAY; |
|
2739 _ERR: mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL); |
|
2740 return err; |
|
2741 } |
|
2742 |
|
2743 /* End: bn_mp_exteuclid.c */ |
|
2744 |
|
2745 /* Start: bn_mp_fread.c */ |
|
2746 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
2747 * |
|
2748 * LibTomMath is a library that provides multiple-precision |
|
2749 * integer arithmetic as well as number theoretic functionality. |
|
2750 * |
|
2751 * The library was designed directly after the MPI library by |
|
2752 * Michael Fromberger but has been written from scratch with |
|
2753 * additional optimizations in place. |
|
2754 * |
|
2755 * The library is free for all purposes without any express |
|
2756 * guarantee it works. |
|
2757 * |
|
2758 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
2759 */ |
15
|
2760 #include <ltc_tommath.h> |
3
|
2761 |
|
2762 /* read a bigint from a file stream in ASCII */ |
|
2763 int mp_fread(mp_int *a, int radix, FILE *stream) |
|
2764 { |
|
2765 int err, ch, neg, y; |
|
2766 |
|
2767 /* clear a */ |
|
2768 mp_zero(a); |
|
2769 |
|
2770 /* if first digit is - then set negative */ |
|
2771 ch = fgetc(stream); |
|
2772 if (ch == '-') { |
|
2773 neg = MP_NEG; |
|
2774 ch = fgetc(stream); |
|
2775 } else { |
|
2776 neg = MP_ZPOS; |
|
2777 } |
|
2778 |
|
2779 for (;;) { |
|
2780 /* find y in the radix map */ |
|
2781 for (y = 0; y < radix; y++) { |
|
2782 if (mp_s_rmap[y] == ch) { |
|
2783 break; |
|
2784 } |
|
2785 } |
|
2786 if (y == radix) { |
|
2787 break; |
|
2788 } |
|
2789 |
|
2790 /* shift up and add */ |
|
2791 if ((err = mp_mul_d(a, radix, a)) != MP_OKAY) { |
|
2792 return err; |
|
2793 } |
|
2794 if ((err = mp_add_d(a, y, a)) != MP_OKAY) { |
|
2795 return err; |
|
2796 } |
|
2797 |
|
2798 ch = fgetc(stream); |
|
2799 } |
|
2800 if (mp_cmp_d(a, 0) != MP_EQ) { |
|
2801 a->sign = neg; |
|
2802 } |
|
2803 |
|
2804 return MP_OKAY; |
|
2805 } |
|
2806 |
|
2807 |
|
2808 /* End: bn_mp_fread.c */ |
|
2809 |
|
2810 /* Start: bn_mp_fwrite.c */ |
|
2811 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
2812 * |
|
2813 * LibTomMath is a library that provides multiple-precision |
|
2814 * integer arithmetic as well as number theoretic functionality. |
|
2815 * |
|
2816 * The library was designed directly after the MPI library by |
|
2817 * Michael Fromberger but has been written from scratch with |
|
2818 * additional optimizations in place. |
|
2819 * |
|
2820 * The library is free for all purposes without any express |
|
2821 * guarantee it works. |
|
2822 * |
|
2823 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
2824 */ |
15
|
2825 #include <ltc_tommath.h> |
3
|
2826 |
|
2827 int mp_fwrite(mp_int *a, int radix, FILE *stream) |
|
2828 { |
|
2829 char *buf; |
|
2830 int err, len, x; |
|
2831 |
|
2832 if ((err = mp_radix_size(a, radix, &len)) != MP_OKAY) { |
|
2833 return err; |
|
2834 } |
|
2835 |
|
2836 buf = OPT_CAST(char) XMALLOC (len); |
|
2837 if (buf == NULL) { |
|
2838 return MP_MEM; |
|
2839 } |
|
2840 |
|
2841 if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) { |
|
2842 XFREE (buf); |
|
2843 return err; |
|
2844 } |
|
2845 |
|
2846 for (x = 0; x < len; x++) { |
|
2847 if (fputc(buf[x], stream) == EOF) { |
|
2848 XFREE (buf); |
|
2849 return MP_VAL; |
|
2850 } |
|
2851 } |
|
2852 |
|
2853 XFREE (buf); |
|
2854 return MP_OKAY; |
|
2855 } |
|
2856 |
|
2857 |
|
2858 /* End: bn_mp_fwrite.c */ |
|
2859 |
|
2860 /* Start: bn_mp_gcd.c */ |
|
2861 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
2862 * |
|
2863 * LibTomMath is a library that provides multiple-precision |
|
2864 * integer arithmetic as well as number theoretic functionality. |
|
2865 * |
|
2866 * The library was designed directly after the MPI library by |
|
2867 * Michael Fromberger but has been written from scratch with |
|
2868 * additional optimizations in place. |
|
2869 * |
|
2870 * The library is free for all purposes without any express |
|
2871 * guarantee it works. |
|
2872 * |
|
2873 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
2874 */ |
15
|
2875 #include <ltc_tommath.h> |
3
|
2876 |
|
2877 /* Greatest Common Divisor using the binary method */ |
|
2878 int mp_gcd (mp_int * a, mp_int * b, mp_int * c) |
|
2879 { |
|
2880 mp_int u, v; |
|
2881 int k, u_lsb, v_lsb, res; |
|
2882 |
|
2883 /* either zero than gcd is the largest */ |
|
2884 if (mp_iszero (a) == 1 && mp_iszero (b) == 0) { |
|
2885 return mp_abs (b, c); |
|
2886 } |
|
2887 if (mp_iszero (a) == 0 && mp_iszero (b) == 1) { |
|
2888 return mp_abs (a, c); |
|
2889 } |
|
2890 |
|
2891 /* optimized. At this point if a == 0 then |
|
2892 * b must equal zero too |
|
2893 */ |
|
2894 if (mp_iszero (a) == 1) { |
|
2895 mp_zero(c); |
|
2896 return MP_OKAY; |
|
2897 } |
|
2898 |
|
2899 /* get copies of a and b we can modify */ |
|
2900 if ((res = mp_init_copy (&u, a)) != MP_OKAY) { |
|
2901 return res; |
|
2902 } |
|
2903 |
|
2904 if ((res = mp_init_copy (&v, b)) != MP_OKAY) { |
|
2905 goto __U; |
|
2906 } |
|
2907 |
|
2908 /* must be positive for the remainder of the algorithm */ |
|
2909 u.sign = v.sign = MP_ZPOS; |
|
2910 |
|
2911 /* B1. Find the common power of two for u and v */ |
|
2912 u_lsb = mp_cnt_lsb(&u); |
|
2913 v_lsb = mp_cnt_lsb(&v); |
|
2914 k = MIN(u_lsb, v_lsb); |
|
2915 |
|
2916 if (k > 0) { |
|
2917 /* divide the power of two out */ |
|
2918 if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) { |
|
2919 goto __V; |
|
2920 } |
|
2921 |
|
2922 if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) { |
|
2923 goto __V; |
|
2924 } |
|
2925 } |
|
2926 |
|
2927 /* divide any remaining factors of two out */ |
|
2928 if (u_lsb != k) { |
|
2929 if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) { |
|
2930 goto __V; |
|
2931 } |
|
2932 } |
|
2933 |
|
2934 if (v_lsb != k) { |
|
2935 if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) { |
|
2936 goto __V; |
|
2937 } |
|
2938 } |
|
2939 |
|
2940 while (mp_iszero(&v) == 0) { |
|
2941 /* make sure v is the largest */ |
|
2942 if (mp_cmp_mag(&u, &v) == MP_GT) { |
|
2943 /* swap u and v to make sure v is >= u */ |
|
2944 mp_exch(&u, &v); |
|
2945 } |
|
2946 |
|
2947 /* subtract smallest from largest */ |
|
2948 if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) { |
|
2949 goto __V; |
|
2950 } |
|
2951 |
|
2952 /* Divide out all factors of two */ |
|
2953 if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) { |
|
2954 goto __V; |
|
2955 } |
|
2956 } |
|
2957 |
|
2958 /* multiply by 2**k which we divided out at the beginning */ |
|
2959 if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) { |
|
2960 goto __V; |
|
2961 } |
|
2962 c->sign = MP_ZPOS; |
|
2963 res = MP_OKAY; |
|
2964 __V:mp_clear (&u); |
|
2965 __U:mp_clear (&v); |
|
2966 return res; |
|
2967 } |
|
2968 |
|
2969 /* End: bn_mp_gcd.c */ |
|
2970 |
|
2971 /* Start: bn_mp_get_int.c */ |
|
2972 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
2973 * |
|
2974 * LibTomMath is a library that provides multiple-precision |
|
2975 * integer arithmetic as well as number theoretic functionality. |
|
2976 * |
|
2977 * The library was designed directly after the MPI library by |
|
2978 * Michael Fromberger but has been written from scratch with |
|
2979 * additional optimizations in place. |
|
2980 * |
|
2981 * The library is free for all purposes without any express |
|
2982 * guarantee it works. |
|
2983 * |
|
2984 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
2985 */ |
15
|
2986 #include <ltc_tommath.h> |
3
|
2987 |
|
2988 /* get the lower 32-bits of an mp_int */ |
|
2989 unsigned long mp_get_int(mp_int * a) |
|
2990 { |
|
2991 int i; |
|
2992 unsigned long res; |
|
2993 |
|
2994 if (a->used == 0) { |
|
2995 return 0; |
|
2996 } |
|
2997 |
|
2998 /* get number of digits of the lsb we have to read */ |
|
2999 i = MIN(a->used,(int)((sizeof(unsigned long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1; |
|
3000 |
|
3001 /* get most significant digit of result */ |
|
3002 res = DIGIT(a,i); |
|
3003 |
|
3004 while (--i >= 0) { |
|
3005 res = (res << DIGIT_BIT) | DIGIT(a,i); |
|
3006 } |
|
3007 |
|
3008 /* force result to 32-bits always so it is consistent on non 32-bit platforms */ |
|
3009 return res & 0xFFFFFFFFUL; |
|
3010 } |
|
3011 |
|
3012 /* End: bn_mp_get_int.c */ |
|
3013 |
|
3014 /* Start: bn_mp_grow.c */ |
|
3015 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
3016 * |
|
3017 * LibTomMath is a library that provides multiple-precision |
|
3018 * integer arithmetic as well as number theoretic functionality. |
|
3019 * |
|
3020 * The library was designed directly after the MPI library by |
|
3021 * Michael Fromberger but has been written from scratch with |
|
3022 * additional optimizations in place. |
|
3023 * |
|
3024 * The library is free for all purposes without any express |
|
3025 * guarantee it works. |
|
3026 * |
|
3027 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
3028 */ |
15
|
3029 #include <ltc_tommath.h> |
3
|
3030 |
|
3031 /* grow as required */ |
|
3032 int mp_grow (mp_int * a, int size) |
|
3033 { |
|
3034 int i; |
|
3035 mp_digit *tmp; |
|
3036 |
|
3037 /* if the alloc size is smaller alloc more ram */ |
|
3038 if (a->alloc < size) { |
|
3039 /* ensure there are always at least MP_PREC digits extra on top */ |
|
3040 size += (MP_PREC * 2) - (size % MP_PREC); |
|
3041 |
|
3042 /* reallocate the array a->dp |
|
3043 * |
|
3044 * We store the return in a temporary variable |
|
3045 * in case the operation failed we don't want |
|
3046 * to overwrite the dp member of a. |
|
3047 */ |
|
3048 tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size); |
|
3049 if (tmp == NULL) { |
|
3050 /* reallocation failed but "a" is still valid [can be freed] */ |
|
3051 return MP_MEM; |
|
3052 } |
|
3053 |
|
3054 /* reallocation succeeded so set a->dp */ |
|
3055 a->dp = tmp; |
|
3056 |
|
3057 /* zero excess digits */ |
|
3058 i = a->alloc; |
|
3059 a->alloc = size; |
|
3060 for (; i < a->alloc; i++) { |
|
3061 a->dp[i] = 0; |
|
3062 } |
|
3063 } |
|
3064 return MP_OKAY; |
|
3065 } |
|
3066 |
|
3067 /* End: bn_mp_grow.c */ |
|
3068 |
|
3069 /* Start: bn_mp_init.c */ |
|
3070 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
3071 * |
|
3072 * LibTomMath is a library that provides multiple-precision |
|
3073 * integer arithmetic as well as number theoretic functionality. |
|
3074 * |
|
3075 * The library was designed directly after the MPI library by |
|
3076 * Michael Fromberger but has been written from scratch with |
|
3077 * additional optimizations in place. |
|
3078 * |
|
3079 * The library is free for all purposes without any express |
|
3080 * guarantee it works. |
|
3081 * |
|
3082 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
3083 */ |
15
|
3084 #include <ltc_tommath.h> |
3
|
3085 |
|
3086 /* init a new bigint */ |
|
3087 int mp_init (mp_int * a) |
|
3088 { |
|
3089 /* allocate memory required and clear it */ |
|
3090 a->dp = OPT_CAST(mp_digit) XCALLOC (sizeof (mp_digit), MP_PREC); |
|
3091 if (a->dp == NULL) { |
|
3092 return MP_MEM; |
|
3093 } |
|
3094 |
|
3095 /* set the used to zero, allocated digits to the default precision |
|
3096 * and sign to positive */ |
|
3097 a->used = 0; |
|
3098 a->alloc = MP_PREC; |
|
3099 a->sign = MP_ZPOS; |
|
3100 |
|
3101 return MP_OKAY; |
|
3102 } |
|
3103 |
|
3104 /* End: bn_mp_init.c */ |
|
3105 |
|
3106 /* Start: bn_mp_init_copy.c */ |
|
3107 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
3108 * |
|
3109 * LibTomMath is a library that provides multiple-precision |
|
3110 * integer arithmetic as well as number theoretic functionality. |
|
3111 * |
|
3112 * The library was designed directly after the MPI library by |
|
3113 * Michael Fromberger but has been written from scratch with |
|
3114 * additional optimizations in place. |
|
3115 * |
|
3116 * The library is free for all purposes without any express |
|
3117 * guarantee it works. |
|
3118 * |
|
3119 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
3120 */ |
15
|
3121 #include <ltc_tommath.h> |
3
|
3122 |
|
3123 /* creates "a" then copies b into it */ |
|
3124 int mp_init_copy (mp_int * a, mp_int * b) |
|
3125 { |
|
3126 int res; |
|
3127 |
|
3128 if ((res = mp_init (a)) != MP_OKAY) { |
|
3129 return res; |
|
3130 } |
|
3131 return mp_copy (b, a); |
|
3132 } |
|
3133 |
|
3134 /* End: bn_mp_init_copy.c */ |
|
3135 |
|
3136 /* Start: bn_mp_init_multi.c */ |
|
3137 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
3138 * |
|
3139 * LibTomMath is a library that provides multiple-precision |
|
3140 * integer arithmetic as well as number theoretic functionality. |
|
3141 * |
|
3142 * The library was designed directly after the MPI library by |
|
3143 * Michael Fromberger but has been written from scratch with |
|
3144 * additional optimizations in place. |
|
3145 * |
|
3146 * The library is free for all purposes without any express |
|
3147 * guarantee it works. |
|
3148 * |
|
3149 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
3150 */ |
15
|
3151 #include <ltc_tommath.h> |
3
|
3152 #include <stdarg.h> |
|
3153 |
|
3154 int mp_init_multi(mp_int *mp, ...) |
|
3155 { |
|
3156 mp_err res = MP_OKAY; /* Assume ok until proven otherwise */ |
|
3157 int n = 0; /* Number of ok inits */ |
|
3158 mp_int* cur_arg = mp; |
|
3159 va_list args; |
|
3160 |
|
3161 va_start(args, mp); /* init args to next argument from caller */ |
|
3162 while (cur_arg != NULL) { |
|
3163 if (mp_init(cur_arg) != MP_OKAY) { |
|
3164 /* Oops - error! Back-track and mp_clear what we already |
|
3165 succeeded in init-ing, then return error. |
|
3166 */ |
|
3167 va_list clean_args; |
|
3168 |
|
3169 /* end the current list */ |
|
3170 va_end(args); |
|
3171 |
|
3172 /* now start cleaning up */ |
|
3173 cur_arg = mp; |
|
3174 va_start(clean_args, mp); |
|
3175 while (n--) { |
|
3176 mp_clear(cur_arg); |
|
3177 cur_arg = va_arg(clean_args, mp_int*); |
|
3178 } |
|
3179 va_end(clean_args); |
|
3180 res = MP_MEM; |
|
3181 break; |
|
3182 } |
|
3183 n++; |
|
3184 cur_arg = va_arg(args, mp_int*); |
|
3185 } |
|
3186 va_end(args); |
|
3187 return res; /* Assumed ok, if error flagged above. */ |
|
3188 } |
|
3189 |
|
3190 |
|
3191 /* End: bn_mp_init_multi.c */ |
|
3192 |
|
3193 /* Start: bn_mp_init_set.c */ |
|
3194 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
3195 * |
|
3196 * LibTomMath is a library that provides multiple-precision |
|
3197 * integer arithmetic as well as number theoretic functionality. |
|
3198 * |
|
3199 * The library was designed directly after the MPI library by |
|
3200 * Michael Fromberger but has been written from scratch with |
|
3201 * additional optimizations in place. |
|
3202 * |
|
3203 * The library is free for all purposes without any express |
|
3204 * guarantee it works. |
|
3205 * |
|
3206 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
3207 */ |
15
|
3208 #include <ltc_tommath.h> |
3
|
3209 |
|
3210 /* initialize and set a digit */ |
|
3211 int mp_init_set (mp_int * a, mp_digit b) |
|
3212 { |
|
3213 int err; |
|
3214 if ((err = mp_init(a)) != MP_OKAY) { |
|
3215 return err; |
|
3216 } |
|
3217 mp_set(a, b); |
|
3218 return err; |
|
3219 } |
|
3220 |
|
3221 /* End: bn_mp_init_set.c */ |
|
3222 |
|
3223 /* Start: bn_mp_init_set_int.c */ |
|
3224 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
3225 * |
|
3226 * LibTomMath is a library that provides multiple-precision |
|
3227 * integer arithmetic as well as number theoretic functionality. |
|
3228 * |
|
3229 * The library was designed directly after the MPI library by |
|
3230 * Michael Fromberger but has been written from scratch with |
|
3231 * additional optimizations in place. |
|
3232 * |
|
3233 * The library is free for all purposes without any express |
|
3234 * guarantee it works. |
|
3235 * |
|
3236 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
3237 */ |
15
|
3238 #include <ltc_tommath.h> |
3
|
3239 |
|
3240 /* initialize and set a digit */ |
|
3241 int mp_init_set_int (mp_int * a, unsigned long b) |
|
3242 { |
|
3243 int err; |
|
3244 if ((err = mp_init(a)) != MP_OKAY) { |
|
3245 return err; |
|
3246 } |
|
3247 return mp_set_int(a, b); |
|
3248 } |
|
3249 |
|
3250 /* End: bn_mp_init_set_int.c */ |
|
3251 |
|
3252 /* Start: bn_mp_init_size.c */ |
|
3253 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
3254 * |
|
3255 * LibTomMath is a library that provides multiple-precision |
|
3256 * integer arithmetic as well as number theoretic functionality. |
|
3257 * |
|
3258 * The library was designed directly after the MPI library by |
|
3259 * Michael Fromberger but has been written from scratch with |
|
3260 * additional optimizations in place. |
|
3261 * |
|
3262 * The library is free for all purposes without any express |
|
3263 * guarantee it works. |
|
3264 * |
|
3265 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
3266 */ |
15
|
3267 #include <ltc_tommath.h> |
3
|
3268 |
|
3269 /* init an mp_init for a given size */ |
|
3270 int mp_init_size (mp_int * a, int size) |
|
3271 { |
|
3272 /* pad size so there are always extra digits */ |
|
3273 size += (MP_PREC * 2) - (size % MP_PREC); |
|
3274 |
|
3275 /* alloc mem */ |
|
3276 a->dp = OPT_CAST(mp_digit) XCALLOC (sizeof (mp_digit), size); |
|
3277 if (a->dp == NULL) { |
|
3278 return MP_MEM; |
|
3279 } |
|
3280 a->used = 0; |
|
3281 a->alloc = size; |
|
3282 a->sign = MP_ZPOS; |
|
3283 |
|
3284 return MP_OKAY; |
|
3285 } |
|
3286 |
|
3287 /* End: bn_mp_init_size.c */ |
|
3288 |
|
3289 /* Start: bn_mp_invmod.c */ |
|
3290 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
3291 * |
|
3292 * LibTomMath is a library that provides multiple-precision |
|
3293 * integer arithmetic as well as number theoretic functionality. |
|
3294 * |
|
3295 * The library was designed directly after the MPI library by |
|
3296 * Michael Fromberger but has been written from scratch with |
|
3297 * additional optimizations in place. |
|
3298 * |
|
3299 * The library is free for all purposes without any express |
|
3300 * guarantee it works. |
|
3301 * |
|
3302 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
3303 */ |
15
|
3304 #include <ltc_tommath.h> |
3
|
3305 |
|
3306 /* hac 14.61, pp608 */ |
|
3307 int mp_invmod (mp_int * a, mp_int * b, mp_int * c) |
|
3308 { |
|
3309 mp_int x, y, u, v, A, B, C, D; |
|
3310 int res; |
|
3311 |
|
3312 /* b cannot be negative */ |
|
3313 if (b->sign == MP_NEG || mp_iszero(b) == 1) { |
|
3314 return MP_VAL; |
|
3315 } |
|
3316 |
|
3317 /* if the modulus is odd we can use a faster routine instead */ |
|
3318 if (mp_isodd (b) == 1) { |
|
3319 return fast_mp_invmod (a, b, c); |
|
3320 } |
|
3321 |
|
3322 /* init temps */ |
|
3323 if ((res = mp_init_multi(&x, &y, &u, &v, |
|
3324 &A, &B, &C, &D, NULL)) != MP_OKAY) { |
|
3325 return res; |
|
3326 } |
|
3327 |
|
3328 /* x = a, y = b */ |
|
3329 if ((res = mp_copy (a, &x)) != MP_OKAY) { |
|
3330 goto __ERR; |
|
3331 } |
|
3332 if ((res = mp_copy (b, &y)) != MP_OKAY) { |
|
3333 goto __ERR; |
|
3334 } |
|
3335 |
|
3336 /* 2. [modified] if x,y are both even then return an error! */ |
|
3337 if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) { |
|
3338 res = MP_VAL; |
|
3339 goto __ERR; |
|
3340 } |
|
3341 |
|
3342 /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ |
|
3343 if ((res = mp_copy (&x, &u)) != MP_OKAY) { |
|
3344 goto __ERR; |
|
3345 } |
|
3346 if ((res = mp_copy (&y, &v)) != MP_OKAY) { |
|
3347 goto __ERR; |
|
3348 } |
|
3349 mp_set (&A, 1); |
|
3350 mp_set (&D, 1); |
|
3351 |
|
3352 top: |
|
3353 /* 4. while u is even do */ |
|
3354 while (mp_iseven (&u) == 1) { |
|
3355 /* 4.1 u = u/2 */ |
|
3356 if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { |
|
3357 goto __ERR; |
|
3358 } |
|
3359 /* 4.2 if A or B is odd then */ |
|
3360 if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) { |
|
3361 /* A = (A+y)/2, B = (B-x)/2 */ |
|
3362 if ((res = mp_add (&A, &y, &A)) != MP_OKAY) { |
|
3363 goto __ERR; |
|
3364 } |
|
3365 if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { |
|
3366 goto __ERR; |
|
3367 } |
|
3368 } |
|
3369 /* A = A/2, B = B/2 */ |
|
3370 if ((res = mp_div_2 (&A, &A)) != MP_OKAY) { |
|
3371 goto __ERR; |
|
3372 } |
|
3373 if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { |
|
3374 goto __ERR; |
|
3375 } |
|
3376 } |
|
3377 |
|
3378 /* 5. while v is even do */ |
|
3379 while (mp_iseven (&v) == 1) { |
|
3380 /* 5.1 v = v/2 */ |
|
3381 if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { |
|
3382 goto __ERR; |
|
3383 } |
|
3384 /* 5.2 if C or D is odd then */ |
|
3385 if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) { |
|
3386 /* C = (C+y)/2, D = (D-x)/2 */ |
|
3387 if ((res = mp_add (&C, &y, &C)) != MP_OKAY) { |
|
3388 goto __ERR; |
|
3389 } |
|
3390 if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { |
|
3391 goto __ERR; |
|
3392 } |
|
3393 } |
|
3394 /* C = C/2, D = D/2 */ |
|
3395 if ((res = mp_div_2 (&C, &C)) != MP_OKAY) { |
|
3396 goto __ERR; |
|
3397 } |
|
3398 if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { |
|
3399 goto __ERR; |
|
3400 } |
|
3401 } |
|
3402 |
|
3403 /* 6. if u >= v then */ |
|
3404 if (mp_cmp (&u, &v) != MP_LT) { |
|
3405 /* u = u - v, A = A - C, B = B - D */ |
|
3406 if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { |
|
3407 goto __ERR; |
|
3408 } |
|
3409 |
|
3410 if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) { |
|
3411 goto __ERR; |
|
3412 } |
|
3413 |
|
3414 if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { |
|
3415 goto __ERR; |
|
3416 } |
|
3417 } else { |
|
3418 /* v - v - u, C = C - A, D = D - B */ |
|
3419 if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { |
|
3420 goto __ERR; |
|
3421 } |
|
3422 |
|
3423 if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) { |
|
3424 goto __ERR; |
|
3425 } |
|
3426 |
|
3427 if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { |
|
3428 goto __ERR; |
|
3429 } |
|
3430 } |
|
3431 |
|
3432 /* if not zero goto step 4 */ |
|
3433 if (mp_iszero (&u) == 0) |
|
3434 goto top; |
|
3435 |
|
3436 /* now a = C, b = D, gcd == g*v */ |
|
3437 |
|
3438 /* if v != 1 then there is no inverse */ |
|
3439 if (mp_cmp_d (&v, 1) != MP_EQ) { |
|
3440 res = MP_VAL; |
|
3441 goto __ERR; |
|
3442 } |
|
3443 |
|
3444 /* if its too low */ |
|
3445 while (mp_cmp_d(&C, 0) == MP_LT) { |
|
3446 if ((res = mp_add(&C, b, &C)) != MP_OKAY) { |
|
3447 goto __ERR; |
|
3448 } |
|
3449 } |
|
3450 |
|
3451 /* too big */ |
|
3452 while (mp_cmp_mag(&C, b) != MP_LT) { |
|
3453 if ((res = mp_sub(&C, b, &C)) != MP_OKAY) { |
|
3454 goto __ERR; |
|
3455 } |
|
3456 } |
|
3457 |
|
3458 /* C is now the inverse */ |
|
3459 mp_exch (&C, c); |
|
3460 res = MP_OKAY; |
|
3461 __ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL); |
|
3462 return res; |
|
3463 } |
|
3464 |
|
3465 /* End: bn_mp_invmod.c */ |
|
3466 |
|
3467 /* Start: bn_mp_is_square.c */ |
|
3468 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
3469 * |
|
3470 * LibTomMath is a library that provides multiple-precision |
|
3471 * integer arithmetic as well as number theoretic functionality. |
|
3472 * |
|
3473 * The library was designed directly after the MPI library by |
|
3474 * Michael Fromberger but has been written from scratch with |
|
3475 * additional optimizations in place. |
|
3476 * |
|
3477 * The library is free for all purposes without any express |
|
3478 * guarantee it works. |
|
3479 * |
|
3480 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
3481 */ |
15
|
3482 #include <ltc_tommath.h> |
3
|
3483 |
|
3484 /* Check if remainders are possible squares - fast exclude non-squares */ |
|
3485 static const char rem_128[128] = { |
|
3486 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, |
|
3487 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, |
|
3488 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, |
|
3489 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, |
|
3490 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, |
|
3491 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, |
|
3492 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, |
|
3493 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1 |
|
3494 }; |
|
3495 |
|
3496 static const char rem_105[105] = { |
|
3497 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, |
|
3498 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, |
|
3499 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, |
|
3500 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, |
|
3501 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, |
|
3502 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, |
|
3503 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1 |
|
3504 }; |
|
3505 |
|
3506 /* Store non-zero to ret if arg is square, and zero if not */ |
|
3507 int mp_is_square(mp_int *arg,int *ret) |
|
3508 { |
|
3509 int res; |
|
3510 mp_digit c; |
|
3511 mp_int t; |
|
3512 unsigned long r; |
|
3513 |
|
3514 /* Default to Non-square :) */ |
|
3515 *ret = MP_NO; |
|
3516 |
|
3517 if (arg->sign == MP_NEG) { |
|
3518 return MP_VAL; |
|
3519 } |
|
3520 |
|
3521 /* digits used? (TSD) */ |
|
3522 if (arg->used == 0) { |
|
3523 return MP_OKAY; |
|
3524 } |
|
3525 |
|
3526 /* First check mod 128 (suppose that DIGIT_BIT is at least 7) */ |
|
3527 if (rem_128[127 & DIGIT(arg,0)] == 1) { |
|
3528 return MP_OKAY; |
|
3529 } |
|
3530 |
|
3531 /* Next check mod 105 (3*5*7) */ |
|
3532 if ((res = mp_mod_d(arg,105,&c)) != MP_OKAY) { |
|
3533 return res; |
|
3534 } |
|
3535 if (rem_105[c] == 1) { |
|
3536 return MP_OKAY; |
|
3537 } |
|
3538 |
|
3539 /* product of primes less than 2^31 */ |
|
3540 if ((res = mp_init_set_int(&t,11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) { |
|
3541 return res; |
|
3542 } |
|
3543 if ((res = mp_mod(arg,&t,&t)) != MP_OKAY) { |
|
3544 goto ERR; |
|
3545 } |
|
3546 r = mp_get_int(&t); |
|
3547 /* Check for other prime modules, note it's not an ERROR but we must |
|
3548 * free "t" so the easiest way is to goto ERR. We know that res |
|
3549 * is already equal to MP_OKAY from the mp_mod call |
|
3550 */ |
|
3551 if ( (1L<<(r%11)) & 0x5C4L ) goto ERR; |
|
3552 if ( (1L<<(r%13)) & 0x9E4L ) goto ERR; |
|
3553 if ( (1L<<(r%17)) & 0x5CE8L ) goto ERR; |
|
3554 if ( (1L<<(r%19)) & 0x4F50CL ) goto ERR; |
|
3555 if ( (1L<<(r%23)) & 0x7ACCA0L ) goto ERR; |
|
3556 if ( (1L<<(r%29)) & 0xC2EDD0CL ) goto ERR; |
|
3557 if ( (1L<<(r%31)) & 0x6DE2B848L ) goto ERR; |
|
3558 |
|
3559 /* Final check - is sqr(sqrt(arg)) == arg ? */ |
|
3560 if ((res = mp_sqrt(arg,&t)) != MP_OKAY) { |
|
3561 goto ERR; |
|
3562 } |
|
3563 if ((res = mp_sqr(&t,&t)) != MP_OKAY) { |
|
3564 goto ERR; |
|
3565 } |
|
3566 |
|
3567 *ret = (mp_cmp_mag(&t,arg) == MP_EQ) ? MP_YES : MP_NO; |
|
3568 ERR:mp_clear(&t); |
|
3569 return res; |
|
3570 } |
|
3571 |
|
3572 /* End: bn_mp_is_square.c */ |
|
3573 |
|
3574 /* Start: bn_mp_jacobi.c */ |
|
3575 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
3576 * |
|
3577 * LibTomMath is a library that provides multiple-precision |
|
3578 * integer arithmetic as well as number theoretic functionality. |
|
3579 * |
|
3580 * The library was designed directly after the MPI library by |
|
3581 * Michael Fromberger but has been written from scratch with |
|
3582 * additional optimizations in place. |
|
3583 * |
|
3584 * The library is free for all purposes without any express |
|
3585 * guarantee it works. |
|
3586 * |
|
3587 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
3588 */ |
15
|
3589 #include <ltc_tommath.h> |
3
|
3590 |
|
3591 /* computes the jacobi c = (a | n) (or Legendre if n is prime) |
|
3592 * HAC pp. 73 Algorithm 2.149 |
|
3593 */ |
|
3594 int mp_jacobi (mp_int * a, mp_int * p, int *c) |
|
3595 { |
|
3596 mp_int a1, p1; |
|
3597 int k, s, r, res; |
|
3598 mp_digit residue; |
|
3599 |
|
3600 /* if p <= 0 return MP_VAL */ |
|
3601 if (mp_cmp_d(p, 0) != MP_GT) { |
|
3602 return MP_VAL; |
|
3603 } |
|
3604 |
|
3605 /* step 1. if a == 0, return 0 */ |
|
3606 if (mp_iszero (a) == 1) { |
|
3607 *c = 0; |
|
3608 return MP_OKAY; |
|
3609 } |
|
3610 |
|
3611 /* step 2. if a == 1, return 1 */ |
|
3612 if (mp_cmp_d (a, 1) == MP_EQ) { |
|
3613 *c = 1; |
|
3614 return MP_OKAY; |
|
3615 } |
|
3616 |
|
3617 /* default */ |
|
3618 s = 0; |
|
3619 |
|
3620 /* step 3. write a = a1 * 2**k */ |
|
3621 if ((res = mp_init_copy (&a1, a)) != MP_OKAY) { |
|
3622 return res; |
|
3623 } |
|
3624 |
|
3625 if ((res = mp_init (&p1)) != MP_OKAY) { |
|
3626 goto __A1; |
|
3627 } |
|
3628 |
|
3629 /* divide out larger power of two */ |
|
3630 k = mp_cnt_lsb(&a1); |
|
3631 if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) { |
|
3632 goto __P1; |
|
3633 } |
|
3634 |
|
3635 /* step 4. if e is even set s=1 */ |
|
3636 if ((k & 1) == 0) { |
|
3637 s = 1; |
|
3638 } else { |
|
3639 /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */ |
|
3640 residue = p->dp[0] & 7; |
|
3641 |
|
3642 if (residue == 1 || residue == 7) { |
|
3643 s = 1; |
|
3644 } else if (residue == 3 || residue == 5) { |
|
3645 s = -1; |
|
3646 } |
|
3647 } |
|
3648 |
|
3649 /* step 5. if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */ |
|
3650 if ( ((p->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) { |
|
3651 s = -s; |
|
3652 } |
|
3653 |
|
3654 /* if a1 == 1 we're done */ |
|
3655 if (mp_cmp_d (&a1, 1) == MP_EQ) { |
|
3656 *c = s; |
|
3657 } else { |
|
3658 /* n1 = n mod a1 */ |
|
3659 if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) { |
|
3660 goto __P1; |
|
3661 } |
|
3662 if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) { |
|
3663 goto __P1; |
|
3664 } |
|
3665 *c = s * r; |
|
3666 } |
|
3667 |
|
3668 /* done */ |
|
3669 res = MP_OKAY; |
|
3670 __P1:mp_clear (&p1); |
|
3671 __A1:mp_clear (&a1); |
|
3672 return res; |
|
3673 } |
|
3674 |
|
3675 /* End: bn_mp_jacobi.c */ |
|
3676 |
|
3677 /* Start: bn_mp_karatsuba_mul.c */ |
|
3678 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
3679 * |
|
3680 * LibTomMath is a library that provides multiple-precision |
|
3681 * integer arithmetic as well as number theoretic functionality. |
|
3682 * |
|
3683 * The library was designed directly after the MPI library by |
|
3684 * Michael Fromberger but has been written from scratch with |
|
3685 * additional optimizations in place. |
|
3686 * |
|
3687 * The library is free for all purposes without any express |
|
3688 * guarantee it works. |
|
3689 * |
|
3690 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
3691 */ |
15
|
3692 #include <ltc_tommath.h> |
3
|
3693 |
|
3694 /* c = |a| * |b| using Karatsuba Multiplication using |
|
3695 * three half size multiplications |
|
3696 * |
|
3697 * Let B represent the radix [e.g. 2**DIGIT_BIT] and |
|
3698 * let n represent half of the number of digits in |
|
3699 * the min(a,b) |
|
3700 * |
|
3701 * a = a1 * B**n + a0 |
|
3702 * b = b1 * B**n + b0 |
|
3703 * |
|
3704 * Then, a * b => |
|
3705 a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0 |
|
3706 * |
|
3707 * Note that a1b1 and a0b0 are used twice and only need to be |
|
3708 * computed once. So in total three half size (half # of |
|
3709 * digit) multiplications are performed, a0b0, a1b1 and |
|
3710 * (a1-b1)(a0-b0) |
|
3711 * |
|
3712 * Note that a multiplication of half the digits requires |
|
3713 * 1/4th the number of single precision multiplications so in |
|
3714 * total after one call 25% of the single precision multiplications |
|
3715 * are saved. Note also that the call to mp_mul can end up back |
|
3716 * in this function if the a0, a1, b0, or b1 are above the threshold. |
|
3717 * This is known as divide-and-conquer and leads to the famous |
|
3718 * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than |
|
3719 * the standard O(N**2) that the baseline/comba methods use. |
|
3720 * Generally though the overhead of this method doesn't pay off |
|
3721 * until a certain size (N ~ 80) is reached. |
|
3722 */ |
|
3723 int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c) |
|
3724 { |
|
3725 mp_int x0, x1, y0, y1, t1, x0y0, x1y1; |
|
3726 int B, err; |
|
3727 |
|
3728 /* default the return code to an error */ |
|
3729 err = MP_MEM; |
|
3730 |
|
3731 /* min # of digits */ |
|
3732 B = MIN (a->used, b->used); |
|
3733 |
|
3734 /* now divide in two */ |
|
3735 B = B >> 1; |
|
3736 |
|
3737 /* init copy all the temps */ |
|
3738 if (mp_init_size (&x0, B) != MP_OKAY) |
|
3739 goto ERR; |
|
3740 if (mp_init_size (&x1, a->used - B) != MP_OKAY) |
|
3741 goto X0; |
|
3742 if (mp_init_size (&y0, B) != MP_OKAY) |
|
3743 goto X1; |
|
3744 if (mp_init_size (&y1, b->used - B) != MP_OKAY) |
|
3745 goto Y0; |
|
3746 |
|
3747 /* init temps */ |
|
3748 if (mp_init_size (&t1, B * 2) != MP_OKAY) |
|
3749 goto Y1; |
|
3750 if (mp_init_size (&x0y0, B * 2) != MP_OKAY) |
|
3751 goto T1; |
|
3752 if (mp_init_size (&x1y1, B * 2) != MP_OKAY) |
|
3753 goto X0Y0; |
|
3754 |
|
3755 /* now shift the digits */ |
|
3756 x0.sign = x1.sign = a->sign; |
|
3757 y0.sign = y1.sign = b->sign; |
|
3758 |
|
3759 x0.used = y0.used = B; |
|
3760 x1.used = a->used - B; |
|
3761 y1.used = b->used - B; |
|
3762 |
|
3763 { |
|
3764 register int x; |
|
3765 register mp_digit *tmpa, *tmpb, *tmpx, *tmpy; |
|
3766 |
|
3767 /* we copy the digits directly instead of using higher level functions |
|
3768 * since we also need to shift the digits |
|
3769 */ |
|
3770 tmpa = a->dp; |
|
3771 tmpb = b->dp; |
|
3772 |
|
3773 tmpx = x0.dp; |
|
3774 tmpy = y0.dp; |
|
3775 for (x = 0; x < B; x++) { |
|
3776 *tmpx++ = *tmpa++; |
|
3777 *tmpy++ = *tmpb++; |
|
3778 } |
|
3779 |
|
3780 tmpx = x1.dp; |
|
3781 for (x = B; x < a->used; x++) { |
|
3782 *tmpx++ = *tmpa++; |
|
3783 } |
|
3784 |
|
3785 tmpy = y1.dp; |
|
3786 for (x = B; x < b->used; x++) { |
|
3787 *tmpy++ = *tmpb++; |
|
3788 } |
|
3789 } |
|
3790 |
|
3791 /* only need to clamp the lower words since by definition the |
|
3792 * upper words x1/y1 must have a known number of digits |
|
3793 */ |
|
3794 mp_clamp (&x0); |
|
3795 mp_clamp (&y0); |
|
3796 |
|
3797 /* now calc the products x0y0 and x1y1 */ |
|
3798 /* after this x0 is no longer required, free temp [x0==t2]! */ |
|
3799 if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY) |
|
3800 goto X1Y1; /* x0y0 = x0*y0 */ |
|
3801 if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY) |
|
3802 goto X1Y1; /* x1y1 = x1*y1 */ |
|
3803 |
|
3804 /* now calc x1-x0 and y1-y0 */ |
|
3805 if (mp_sub (&x1, &x0, &t1) != MP_OKAY) |
|
3806 goto X1Y1; /* t1 = x1 - x0 */ |
|
3807 if (mp_sub (&y1, &y0, &x0) != MP_OKAY) |
|
3808 goto X1Y1; /* t2 = y1 - y0 */ |
|
3809 if (mp_mul (&t1, &x0, &t1) != MP_OKAY) |
|
3810 goto X1Y1; /* t1 = (x1 - x0) * (y1 - y0) */ |
|
3811 |
|
3812 /* add x0y0 */ |
|
3813 if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY) |
|
3814 goto X1Y1; /* t2 = x0y0 + x1y1 */ |
|
3815 if (mp_sub (&x0, &t1, &t1) != MP_OKAY) |
|
3816 goto X1Y1; /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */ |
|
3817 |
|
3818 /* shift by B */ |
|
3819 if (mp_lshd (&t1, B) != MP_OKAY) |
|
3820 goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */ |
|
3821 if (mp_lshd (&x1y1, B * 2) != MP_OKAY) |
|
3822 goto X1Y1; /* x1y1 = x1y1 << 2*B */ |
|
3823 |
|
3824 if (mp_add (&x0y0, &t1, &t1) != MP_OKAY) |
|
3825 goto X1Y1; /* t1 = x0y0 + t1 */ |
|
3826 if (mp_add (&t1, &x1y1, c) != MP_OKAY) |
|
3827 goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */ |
|
3828 |
|
3829 /* Algorithm succeeded set the return code to MP_OKAY */ |
|
3830 err = MP_OKAY; |
|
3831 |
|
3832 X1Y1:mp_clear (&x1y1); |
|
3833 X0Y0:mp_clear (&x0y0); |
|
3834 T1:mp_clear (&t1); |
|
3835 Y1:mp_clear (&y1); |
|
3836 Y0:mp_clear (&y0); |
|
3837 X1:mp_clear (&x1); |
|
3838 X0:mp_clear (&x0); |
|
3839 ERR: |
|
3840 return err; |
|
3841 } |
|
3842 |
|
3843 /* End: bn_mp_karatsuba_mul.c */ |
|
3844 |
|
3845 /* Start: bn_mp_karatsuba_sqr.c */ |
|
3846 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
3847 * |
|
3848 * LibTomMath is a library that provides multiple-precision |
|
3849 * integer arithmetic as well as number theoretic functionality. |
|
3850 * |
|
3851 * The library was designed directly after the MPI library by |
|
3852 * Michael Fromberger but has been written from scratch with |
|
3853 * additional optimizations in place. |
|
3854 * |
|
3855 * The library is free for all purposes without any express |
|
3856 * guarantee it works. |
|
3857 * |
|
3858 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
3859 */ |
15
|
3860 #include <ltc_tommath.h> |
3
|
3861 |
|
3862 /* Karatsuba squaring, computes b = a*a using three |
|
3863 * half size squarings |
|
3864 * |
|
3865 * See comments of mp_karatsuba_mul for details. It |
|
3866 * is essentially the same algorithm but merely |
|
3867 * tuned to perform recursive squarings. |
|
3868 */ |
|
3869 int mp_karatsuba_sqr (mp_int * a, mp_int * b) |
|
3870 { |
|
3871 mp_int x0, x1, t1, t2, x0x0, x1x1; |
|
3872 int B, err; |
|
3873 |
|
3874 err = MP_MEM; |
|
3875 |
|
3876 /* min # of digits */ |
|
3877 B = a->used; |
|
3878 |
|
3879 /* now divide in two */ |
|
3880 B = B >> 1; |
|
3881 |
|
3882 /* init copy all the temps */ |
|
3883 if (mp_init_size (&x0, B) != MP_OKAY) |
|
3884 goto ERR; |
|
3885 if (mp_init_size (&x1, a->used - B) != MP_OKAY) |
|
3886 goto X0; |
|
3887 |
|
3888 /* init temps */ |
|
3889 if (mp_init_size (&t1, a->used * 2) != MP_OKAY) |
|
3890 goto X1; |
|
3891 if (mp_init_size (&t2, a->used * 2) != MP_OKAY) |
|
3892 goto T1; |
|
3893 if (mp_init_size (&x0x0, B * 2) != MP_OKAY) |
|
3894 goto T2; |
|
3895 if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY) |
|
3896 goto X0X0; |
|
3897 |
|
3898 { |
|
3899 register int x; |
|
3900 register mp_digit *dst, *src; |
|
3901 |
|
3902 src = a->dp; |
|
3903 |
|
3904 /* now shift the digits */ |
|
3905 dst = x0.dp; |
|
3906 for (x = 0; x < B; x++) { |
|
3907 *dst++ = *src++; |
|
3908 } |
|
3909 |
|
3910 dst = x1.dp; |
|
3911 for (x = B; x < a->used; x++) { |
|
3912 *dst++ = *src++; |
|
3913 } |
|
3914 } |
|
3915 |
|
3916 x0.used = B; |
|
3917 x1.used = a->used - B; |
|
3918 |
|
3919 mp_clamp (&x0); |
|
3920 |
|
3921 /* now calc the products x0*x0 and x1*x1 */ |
|
3922 if (mp_sqr (&x0, &x0x0) != MP_OKAY) |
|
3923 goto X1X1; /* x0x0 = x0*x0 */ |
|
3924 if (mp_sqr (&x1, &x1x1) != MP_OKAY) |
|
3925 goto X1X1; /* x1x1 = x1*x1 */ |
|
3926 |
|
3927 /* now calc (x1-x0)**2 */ |
|
3928 if (mp_sub (&x1, &x0, &t1) != MP_OKAY) |
|
3929 goto X1X1; /* t1 = x1 - x0 */ |
|
3930 if (mp_sqr (&t1, &t1) != MP_OKAY) |
|
3931 goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */ |
|
3932 |
|
3933 /* add x0y0 */ |
|
3934 if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY) |
|
3935 goto X1X1; /* t2 = x0x0 + x1x1 */ |
|
3936 if (mp_sub (&t2, &t1, &t1) != MP_OKAY) |
|
3937 goto X1X1; /* t1 = x0x0 + x1x1 - (x1-x0)*(x1-x0) */ |
|
3938 |
|
3939 /* shift by B */ |
|
3940 if (mp_lshd (&t1, B) != MP_OKAY) |
|
3941 goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */ |
|
3942 if (mp_lshd (&x1x1, B * 2) != MP_OKAY) |
|
3943 goto X1X1; /* x1x1 = x1x1 << 2*B */ |
|
3944 |
|
3945 if (mp_add (&x0x0, &t1, &t1) != MP_OKAY) |
|
3946 goto X1X1; /* t1 = x0x0 + t1 */ |
|
3947 if (mp_add (&t1, &x1x1, b) != MP_OKAY) |
|
3948 goto X1X1; /* t1 = x0x0 + t1 + x1x1 */ |
|
3949 |
|
3950 err = MP_OKAY; |
|
3951 |
|
3952 X1X1:mp_clear (&x1x1); |
|
3953 X0X0:mp_clear (&x0x0); |
|
3954 T2:mp_clear (&t2); |
|
3955 T1:mp_clear (&t1); |
|
3956 X1:mp_clear (&x1); |
|
3957 X0:mp_clear (&x0); |
|
3958 ERR: |
|
3959 return err; |
|
3960 } |
|
3961 |
|
3962 /* End: bn_mp_karatsuba_sqr.c */ |
|
3963 |
|
3964 /* Start: bn_mp_lcm.c */ |
|
3965 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
3966 * |
|
3967 * LibTomMath is a library that provides multiple-precision |
|
3968 * integer arithmetic as well as number theoretic functionality. |
|
3969 * |
|
3970 * The library was designed directly after the MPI library by |
|
3971 * Michael Fromberger but has been written from scratch with |
|
3972 * additional optimizations in place. |
|
3973 * |
|
3974 * The library is free for all purposes without any express |
|
3975 * guarantee it works. |
|
3976 * |
|
3977 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
3978 */ |
15
|
3979 #include <ltc_tommath.h> |
3
|
3980 |
|
3981 /* computes least common multiple as |a*b|/(a, b) */ |
|
3982 int mp_lcm (mp_int * a, mp_int * b, mp_int * c) |
|
3983 { |
|
3984 int res; |
|
3985 mp_int t1, t2; |
|
3986 |
|
3987 |
|
3988 if ((res = mp_init_multi (&t1, &t2, NULL)) != MP_OKAY) { |
|
3989 return res; |
|
3990 } |
|
3991 |
|
3992 /* t1 = get the GCD of the two inputs */ |
|
3993 if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) { |
|
3994 goto __T; |
|
3995 } |
|
3996 |
|
3997 /* divide the smallest by the GCD */ |
|
3998 if (mp_cmp_mag(a, b) == MP_LT) { |
|
3999 /* store quotient in t2 such that t2 * b is the LCM */ |
|
4000 if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) { |
|
4001 goto __T; |
|
4002 } |
|
4003 res = mp_mul(b, &t2, c); |
|
4004 } else { |
|
4005 /* store quotient in t2 such that t2 * a is the LCM */ |
|
4006 if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) { |
|
4007 goto __T; |
|
4008 } |
|
4009 res = mp_mul(a, &t2, c); |
|
4010 } |
|
4011 |
|
4012 /* fix the sign to positive */ |
|
4013 c->sign = MP_ZPOS; |
|
4014 |
|
4015 __T: |
|
4016 mp_clear_multi (&t1, &t2, NULL); |
|
4017 return res; |
|
4018 } |
|
4019 |
|
4020 /* End: bn_mp_lcm.c */ |
|
4021 |
|
4022 /* Start: bn_mp_lshd.c */ |
|
4023 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
4024 * |
|
4025 * LibTomMath is a library that provides multiple-precision |
|
4026 * integer arithmetic as well as number theoretic functionality. |
|
4027 * |
|
4028 * The library was designed directly after the MPI library by |
|
4029 * Michael Fromberger but has been written from scratch with |
|
4030 * additional optimizations in place. |
|
4031 * |
|
4032 * The library is free for all purposes without any express |
|
4033 * guarantee it works. |
|
4034 * |
|
4035 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
4036 */ |
15
|
4037 #include <ltc_tommath.h> |
3
|
4038 |
|
4039 /* shift left a certain amount of digits */ |
|
4040 int mp_lshd (mp_int * a, int b) |
|
4041 { |
|
4042 int x, res; |
|
4043 |
|
4044 /* if its less than zero return */ |
|
4045 if (b <= 0) { |
|
4046 return MP_OKAY; |
|
4047 } |
|
4048 |
|
4049 /* grow to fit the new digits */ |
|
4050 if (a->alloc < a->used + b) { |
|
4051 if ((res = mp_grow (a, a->used + b)) != MP_OKAY) { |
|
4052 return res; |
|
4053 } |
|
4054 } |
|
4055 |
|
4056 { |
|
4057 register mp_digit *top, *bottom; |
|
4058 |
|
4059 /* increment the used by the shift amount then copy upwards */ |
|
4060 a->used += b; |
|
4061 |
|
4062 /* top */ |
|
4063 top = a->dp + a->used - 1; |
|
4064 |
|
4065 /* base */ |
|
4066 bottom = a->dp + a->used - 1 - b; |
|
4067 |
|
4068 /* much like mp_rshd this is implemented using a sliding window |
|
4069 * except the window goes the otherway around. Copying from |
|
4070 * the bottom to the top. see bn_mp_rshd.c for more info. |
|
4071 */ |
|
4072 for (x = a->used - 1; x >= b; x--) { |
|
4073 *top-- = *bottom--; |
|
4074 } |
|
4075 |
|
4076 /* zero the lower digits */ |
|
4077 top = a->dp; |
|
4078 for (x = 0; x < b; x++) { |
|
4079 *top++ = 0; |
|
4080 } |
|
4081 } |
|
4082 return MP_OKAY; |
|
4083 } |
|
4084 |
|
4085 /* End: bn_mp_lshd.c */ |
|
4086 |
|
4087 /* Start: bn_mp_mod.c */ |
|
4088 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
4089 * |
|
4090 * LibTomMath is a library that provides multiple-precision |
|
4091 * integer arithmetic as well as number theoretic functionality. |
|
4092 * |
|
4093 * The library was designed directly after the MPI library by |
|
4094 * Michael Fromberger but has been written from scratch with |
|
4095 * additional optimizations in place. |
|
4096 * |
|
4097 * The library is free for all purposes without any express |
|
4098 * guarantee it works. |
|
4099 * |
|
4100 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
4101 */ |
15
|
4102 #include <ltc_tommath.h> |
3
|
4103 |
|
4104 /* c = a mod b, 0 <= c < b */ |
|
4105 int |
|
4106 mp_mod (mp_int * a, mp_int * b, mp_int * c) |
|
4107 { |
|
4108 mp_int t; |
|
4109 int res; |
|
4110 |
|
4111 if ((res = mp_init (&t)) != MP_OKAY) { |
|
4112 return res; |
|
4113 } |
|
4114 |
|
4115 if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) { |
|
4116 mp_clear (&t); |
|
4117 return res; |
|
4118 } |
|
4119 |
|
4120 if (t.sign != b->sign) { |
|
4121 res = mp_add (b, &t, c); |
|
4122 } else { |
|
4123 res = MP_OKAY; |
|
4124 mp_exch (&t, c); |
|
4125 } |
|
4126 |
|
4127 mp_clear (&t); |
|
4128 return res; |
|
4129 } |
|
4130 |
|
4131 /* End: bn_mp_mod.c */ |
|
4132 |
|
4133 /* Start: bn_mp_mod_2d.c */ |
|
4134 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
4135 * |
|
4136 * LibTomMath is a library that provides multiple-precision |
|
4137 * integer arithmetic as well as number theoretic functionality. |
|
4138 * |
|
4139 * The library was designed directly after the MPI library by |
|
4140 * Michael Fromberger but has been written from scratch with |
|
4141 * additional optimizations in place. |
|
4142 * |
|
4143 * The library is free for all purposes without any express |
|
4144 * guarantee it works. |
|
4145 * |
|
4146 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
4147 */ |
15
|
4148 #include <ltc_tommath.h> |
3
|
4149 |
|
4150 /* calc a value mod 2**b */ |
|
4151 int |
|
4152 mp_mod_2d (mp_int * a, int b, mp_int * c) |
|
4153 { |
|
4154 int x, res; |
|
4155 |
|
4156 /* if b is <= 0 then zero the int */ |
|
4157 if (b <= 0) { |
|
4158 mp_zero (c); |
|
4159 return MP_OKAY; |
|
4160 } |
|
4161 |
|
4162 /* if the modulus is larger than the value than return */ |
|
4163 if (b > (int) (a->used * DIGIT_BIT)) { |
|
4164 res = mp_copy (a, c); |
|
4165 return res; |
|
4166 } |
|
4167 |
|
4168 /* copy */ |
|
4169 if ((res = mp_copy (a, c)) != MP_OKAY) { |
|
4170 return res; |
|
4171 } |
|
4172 |
|
4173 /* zero digits above the last digit of the modulus */ |
|
4174 for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) { |
|
4175 c->dp[x] = 0; |
|
4176 } |
|
4177 /* clear the digit that is not completely outside/inside the modulus */ |
|
4178 c->dp[b / DIGIT_BIT] &= |
|
4179 (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1)); |
|
4180 mp_clamp (c); |
|
4181 return MP_OKAY; |
|
4182 } |
|
4183 |
|
4184 /* End: bn_mp_mod_2d.c */ |
|
4185 |
|
4186 /* Start: bn_mp_mod_d.c */ |
|
4187 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
4188 * |
|
4189 * LibTomMath is a library that provides multiple-precision |
|
4190 * integer arithmetic as well as number theoretic functionality. |
|
4191 * |
|
4192 * The library was designed directly after the MPI library by |
|
4193 * Michael Fromberger but has been written from scratch with |
|
4194 * additional optimizations in place. |
|
4195 * |
|
4196 * The library is free for all purposes without any express |
|
4197 * guarantee it works. |
|
4198 * |
|
4199 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
4200 */ |
15
|
4201 #include <ltc_tommath.h> |
3
|
4202 |
|
4203 int |
|
4204 mp_mod_d (mp_int * a, mp_digit b, mp_digit * c) |
|
4205 { |
|
4206 return mp_div_d(a, b, NULL, c); |
|
4207 } |
|
4208 |
|
4209 /* End: bn_mp_mod_d.c */ |
|
4210 |
|
4211 /* Start: bn_mp_montgomery_calc_normalization.c */ |
|
4212 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
4213 * |
|
4214 * LibTomMath is a library that provides multiple-precision |
|
4215 * integer arithmetic as well as number theoretic functionality. |
|
4216 * |
|
4217 * The library was designed directly after the MPI library by |
|
4218 * Michael Fromberger but has been written from scratch with |
|
4219 * additional optimizations in place. |
|
4220 * |
|
4221 * The library is free for all purposes without any express |
|
4222 * guarantee it works. |
|
4223 * |
|
4224 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
4225 */ |
15
|
4226 #include <ltc_tommath.h> |
3
|
4227 |
|
4228 /* calculates a = B^n mod b for Montgomery reduction |
|
4229 * Where B is the base [e.g. 2^DIGIT_BIT]. |
|
4230 * B^n mod b is computed by first computing |
|
4231 * A = B^(n-1) which doesn't require a reduction but a simple OR. |
|
4232 * then C = A * B = B^n is computed by performing upto DIGIT_BIT |
|
4233 * shifts with subtractions when the result is greater than b. |
|
4234 * |
|
4235 * The method is slightly modified to shift B unconditionally upto just under |
|
4236 * the leading bit of b. This saves alot of multiple precision shifting. |
|
4237 */ |
|
4238 int |
|
4239 mp_montgomery_calc_normalization (mp_int * a, mp_int * b) |
|
4240 { |
|
4241 int x, bits, res; |
|
4242 |
|
4243 /* how many bits of last digit does b use */ |
|
4244 bits = mp_count_bits (b) % DIGIT_BIT; |
|
4245 |
|
4246 /* compute A = B^(n-1) * 2^(bits-1) */ |
|
4247 if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) { |
|
4248 return res; |
|
4249 } |
|
4250 |
|
4251 /* now compute C = A * B mod b */ |
|
4252 for (x = bits - 1; x < (int)DIGIT_BIT; x++) { |
|
4253 if ((res = mp_mul_2 (a, a)) != MP_OKAY) { |
|
4254 return res; |
|
4255 } |
|
4256 if (mp_cmp_mag (a, b) != MP_LT) { |
|
4257 if ((res = s_mp_sub (a, b, a)) != MP_OKAY) { |
|
4258 return res; |
|
4259 } |
|
4260 } |
|
4261 } |
|
4262 |
|
4263 return MP_OKAY; |
|
4264 } |
|
4265 |
|
4266 /* End: bn_mp_montgomery_calc_normalization.c */ |
|
4267 |
|
4268 /* Start: bn_mp_montgomery_reduce.c */ |
|
4269 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
4270 * |
|
4271 * LibTomMath is a library that provides multiple-precision |
|
4272 * integer arithmetic as well as number theoretic functionality. |
|
4273 * |
|
4274 * The library was designed directly after the MPI library by |
|
4275 * Michael Fromberger but has been written from scratch with |
|
4276 * additional optimizations in place. |
|
4277 * |
|
4278 * The library is free for all purposes without any express |
|
4279 * guarantee it works. |
|
4280 * |
|
4281 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
4282 */ |
15
|
4283 #include <ltc_tommath.h> |
3
|
4284 |
|
4285 /* computes xR**-1 == x (mod N) via Montgomery Reduction */ |
|
4286 int |
|
4287 mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) |
|
4288 { |
|
4289 int ix, res, digs; |
|
4290 mp_digit mu; |
|
4291 |
|
4292 /* can the fast reduction [comba] method be used? |
|
4293 * |
|
4294 * Note that unlike in mp_mul you're safely allowed *less* |
|
4295 * than the available columns [255 per default] since carries |
|
4296 * are fixed up in the inner loop. |
|
4297 */ |
|
4298 digs = n->used * 2 + 1; |
|
4299 if ((digs < MP_WARRAY) && |
|
4300 n->used < |
|
4301 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { |
|
4302 return fast_mp_montgomery_reduce (x, n, rho); |
|
4303 } |
|
4304 |
|
4305 /* grow the input as required */ |
|
4306 if (x->alloc < digs) { |
|
4307 if ((res = mp_grow (x, digs)) != MP_OKAY) { |
|
4308 return res; |
|
4309 } |
|
4310 } |
|
4311 x->used = digs; |
|
4312 |
|
4313 for (ix = 0; ix < n->used; ix++) { |
|
4314 /* mu = ai * rho mod b |
|
4315 * |
|
4316 * The value of rho must be precalculated via |
|
4317 * bn_mp_montgomery_setup() such that |
|
4318 * it equals -1/n0 mod b this allows the |
|
4319 * following inner loop to reduce the |
|
4320 * input one digit at a time |
|
4321 */ |
|
4322 mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK); |
|
4323 |
|
4324 /* a = a + mu * m * b**i */ |
|
4325 { |
|
4326 register int iy; |
|
4327 register mp_digit *tmpn, *tmpx, u; |
|
4328 register mp_word r; |
|
4329 |
|
4330 /* alias for digits of the modulus */ |
|
4331 tmpn = n->dp; |
|
4332 |
|
4333 /* alias for the digits of x [the input] */ |
|
4334 tmpx = x->dp + ix; |
|
4335 |
|
4336 /* set the carry to zero */ |
|
4337 u = 0; |
|
4338 |
|
4339 /* Multiply and add in place */ |
|
4340 for (iy = 0; iy < n->used; iy++) { |
|
4341 /* compute product and sum */ |
|
4342 r = ((mp_word)mu) * ((mp_word)*tmpn++) + |
|
4343 ((mp_word) u) + ((mp_word) * tmpx); |
|
4344 |
|
4345 /* get carry */ |
|
4346 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); |
|
4347 |
|
4348 /* fix digit */ |
|
4349 *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK)); |
|
4350 } |
|
4351 /* At this point the ix'th digit of x should be zero */ |
|
4352 |
|
4353 |
|
4354 /* propagate carries upwards as required*/ |
|
4355 while (u) { |
|
4356 *tmpx += u; |
|
4357 u = *tmpx >> DIGIT_BIT; |
|
4358 *tmpx++ &= MP_MASK; |
|
4359 } |
|
4360 } |
|
4361 } |
|
4362 |
|
4363 /* at this point the n.used'th least |
|
4364 * significant digits of x are all zero |
|
4365 * which means we can shift x to the |
|
4366 * right by n.used digits and the |
|
4367 * residue is unchanged. |
|
4368 */ |
|
4369 |
|
4370 /* x = x/b**n.used */ |
|
4371 mp_clamp(x); |
|
4372 mp_rshd (x, n->used); |
|
4373 |
|
4374 /* if x >= n then x = x - n */ |
|
4375 if (mp_cmp_mag (x, n) != MP_LT) { |
|
4376 return s_mp_sub (x, n, x); |
|
4377 } |
|
4378 |
|
4379 return MP_OKAY; |
|
4380 } |
|
4381 |
|
4382 /* End: bn_mp_montgomery_reduce.c */ |
|
4383 |
|
4384 /* Start: bn_mp_montgomery_setup.c */ |
|
4385 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
4386 * |
|
4387 * LibTomMath is a library that provides multiple-precision |
|
4388 * integer arithmetic as well as number theoretic functionality. |
|
4389 * |
|
4390 * The library was designed directly after the MPI library by |
|
4391 * Michael Fromberger but has been written from scratch with |
|
4392 * additional optimizations in place. |
|
4393 * |
|
4394 * The library is free for all purposes without any express |
|
4395 * guarantee it works. |
|
4396 * |
|
4397 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
4398 */ |
15
|
4399 #include <ltc_tommath.h> |
3
|
4400 |
|
4401 /* setups the montgomery reduction stuff */ |
|
4402 int |
|
4403 mp_montgomery_setup (mp_int * n, mp_digit * rho) |
|
4404 { |
|
4405 mp_digit x, b; |
|
4406 |
|
4407 /* fast inversion mod 2**k |
|
4408 * |
|
4409 * Based on the fact that |
|
4410 * |
|
4411 * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n) |
|
4412 * => 2*X*A - X*X*A*A = 1 |
|
4413 * => 2*(1) - (1) = 1 |
|
4414 */ |
|
4415 b = n->dp[0]; |
|
4416 |
|
4417 if ((b & 1) == 0) { |
|
4418 return MP_VAL; |
|
4419 } |
|
4420 |
|
4421 x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */ |
|
4422 x *= 2 - b * x; /* here x*a==1 mod 2**8 */ |
|
4423 #if !defined(MP_8BIT) |
|
4424 x *= 2 - b * x; /* here x*a==1 mod 2**16 */ |
|
4425 #endif |
|
4426 #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT)) |
|
4427 x *= 2 - b * x; /* here x*a==1 mod 2**32 */ |
|
4428 #endif |
|
4429 #ifdef MP_64BIT |
|
4430 x *= 2 - b * x; /* here x*a==1 mod 2**64 */ |
|
4431 #endif |
|
4432 |
|
4433 /* rho = -1/m mod b */ |
|
4434 *rho = (((mp_digit) 1 << ((mp_digit) DIGIT_BIT)) - x) & MP_MASK; |
|
4435 |
|
4436 return MP_OKAY; |
|
4437 } |
|
4438 |
|
4439 /* End: bn_mp_montgomery_setup.c */ |
|
4440 |
|
4441 /* Start: bn_mp_mul.c */ |
|
4442 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
4443 * |
|
4444 * LibTomMath is a library that provides multiple-precision |
|
4445 * integer arithmetic as well as number theoretic functionality. |
|
4446 * |
|
4447 * The library was designed directly after the MPI library by |
|
4448 * Michael Fromberger but has been written from scratch with |
|
4449 * additional optimizations in place. |
|
4450 * |
|
4451 * The library is free for all purposes without any express |
|
4452 * guarantee it works. |
|
4453 * |
|
4454 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
4455 */ |
15
|
4456 #include <ltc_tommath.h> |
3
|
4457 |
|
4458 /* high level multiplication (handles sign) */ |
|
4459 int mp_mul (mp_int * a, mp_int * b, mp_int * c) |
|
4460 { |
|
4461 int res, neg; |
|
4462 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; |
|
4463 |
|
4464 /* use Toom-Cook? */ |
|
4465 if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) { |
|
4466 res = mp_toom_mul(a, b, c); |
|
4467 /* use Karatsuba? */ |
|
4468 } else if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) { |
|
4469 res = mp_karatsuba_mul (a, b, c); |
|
4470 } else { |
|
4471 /* can we use the fast multiplier? |
|
4472 * |
|
4473 * The fast multiplier can be used if the output will |
|
4474 * have less than MP_WARRAY digits and the number of |
|
4475 * digits won't affect carry propagation |
|
4476 */ |
|
4477 int digs = a->used + b->used + 1; |
|
4478 |
|
4479 if ((digs < MP_WARRAY) && |
|
4480 MIN(a->used, b->used) <= |
|
4481 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { |
|
4482 res = fast_s_mp_mul_digs (a, b, c, digs); |
|
4483 } else { |
|
4484 res = s_mp_mul (a, b, c); |
|
4485 } |
|
4486 } |
|
4487 c->sign = neg; |
|
4488 return res; |
|
4489 } |
|
4490 |
|
4491 /* End: bn_mp_mul.c */ |
|
4492 |
|
4493 /* Start: bn_mp_mul_2.c */ |
|
4494 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
4495 * |
|
4496 * LibTomMath is a library that provides multiple-precision |
|
4497 * integer arithmetic as well as number theoretic functionality. |
|
4498 * |
|
4499 * The library was designed directly after the MPI library by |
|
4500 * Michael Fromberger but has been written from scratch with |
|
4501 * additional optimizations in place. |
|
4502 * |
|
4503 * The library is free for all purposes without any express |
|
4504 * guarantee it works. |
|
4505 * |
|
4506 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
4507 */ |
15
|
4508 #include <ltc_tommath.h> |
3
|
4509 |
|
4510 /* b = a*2 */ |
|
4511 int mp_mul_2(mp_int * a, mp_int * b) |
|
4512 { |
|
4513 int x, res, oldused; |
|
4514 |
|
4515 /* grow to accomodate result */ |
|
4516 if (b->alloc < a->used + 1) { |
|
4517 if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) { |
|
4518 return res; |
|
4519 } |
|
4520 } |
|
4521 |
|
4522 oldused = b->used; |
|
4523 b->used = a->used; |
|
4524 |
|
4525 { |
|
4526 register mp_digit r, rr, *tmpa, *tmpb; |
|
4527 |
|
4528 /* alias for source */ |
|
4529 tmpa = a->dp; |
|
4530 |
|
4531 /* alias for dest */ |
|
4532 tmpb = b->dp; |
|
4533 |
|
4534 /* carry */ |
|
4535 r = 0; |
|
4536 for (x = 0; x < a->used; x++) { |
|
4537 |
|
4538 /* get what will be the *next* carry bit from the |
|
4539 * MSB of the current digit |
|
4540 */ |
|
4541 rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1)); |
|
4542 |
|
4543 /* now shift up this digit, add in the carry [from the previous] */ |
|
4544 *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK; |
|
4545 |
|
4546 /* copy the carry that would be from the source |
|
4547 * digit into the next iteration |
|
4548 */ |
|
4549 r = rr; |
|
4550 } |
|
4551 |
|
4552 /* new leading digit? */ |
|
4553 if (r != 0) { |
|
4554 /* add a MSB which is always 1 at this point */ |
|
4555 *tmpb = 1; |
|
4556 ++(b->used); |
|
4557 } |
|
4558 |
|
4559 /* now zero any excess digits on the destination |
|
4560 * that we didn't write to |
|
4561 */ |
|
4562 tmpb = b->dp + b->used; |
|
4563 for (x = b->used; x < oldused; x++) { |
|
4564 *tmpb++ = 0; |
|
4565 } |
|
4566 } |
|
4567 b->sign = a->sign; |
|
4568 return MP_OKAY; |
|
4569 } |
|
4570 |
|
4571 /* End: bn_mp_mul_2.c */ |
|
4572 |
|
4573 /* Start: bn_mp_mul_2d.c */ |
|
4574 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
4575 * |
|
4576 * LibTomMath is a library that provides multiple-precision |
|
4577 * integer arithmetic as well as number theoretic functionality. |
|
4578 * |
|
4579 * The library was designed directly after the MPI library by |
|
4580 * Michael Fromberger but has been written from scratch with |
|
4581 * additional optimizations in place. |
|
4582 * |
|
4583 * The library is free for all purposes without any express |
|
4584 * guarantee it works. |
|
4585 * |
|
4586 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
4587 */ |
15
|
4588 #include <ltc_tommath.h> |
3
|
4589 |
|
4590 /* shift left by a certain bit count */ |
|
4591 int mp_mul_2d (mp_int * a, int b, mp_int * c) |
|
4592 { |
|
4593 mp_digit d; |
|
4594 int res; |
|
4595 |
|
4596 /* copy */ |
|
4597 if (a != c) { |
|
4598 if ((res = mp_copy (a, c)) != MP_OKAY) { |
|
4599 return res; |
|
4600 } |
|
4601 } |
|
4602 |
|
4603 if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) { |
|
4604 if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) { |
|
4605 return res; |
|
4606 } |
|
4607 } |
|
4608 |
|
4609 /* shift by as many digits in the bit count */ |
|
4610 if (b >= (int)DIGIT_BIT) { |
|
4611 if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) { |
|
4612 return res; |
|
4613 } |
|
4614 } |
|
4615 |
|
4616 /* shift any bit count < DIGIT_BIT */ |
|
4617 d = (mp_digit) (b % DIGIT_BIT); |
|
4618 if (d != 0) { |
|
4619 register mp_digit *tmpc, shift, mask, r, rr; |
|
4620 register int x; |
|
4621 |
|
4622 /* bitmask for carries */ |
|
4623 mask = (((mp_digit)1) << d) - 1; |
|
4624 |
|
4625 /* shift for msbs */ |
|
4626 shift = DIGIT_BIT - d; |
|
4627 |
|
4628 /* alias */ |
|
4629 tmpc = c->dp; |
|
4630 |
|
4631 /* carry */ |
|
4632 r = 0; |
|
4633 for (x = 0; x < c->used; x++) { |
|
4634 /* get the higher bits of the current word */ |
|
4635 rr = (*tmpc >> shift) & mask; |
|
4636 |
|
4637 /* shift the current word and OR in the carry */ |
|
4638 *tmpc = ((*tmpc << d) | r) & MP_MASK; |
|
4639 ++tmpc; |
|
4640 |
|
4641 /* set the carry to the carry bits of the current word */ |
|
4642 r = rr; |
|
4643 } |
|
4644 |
|
4645 /* set final carry */ |
|
4646 if (r != 0) { |
|
4647 c->dp[(c->used)++] = r; |
|
4648 } |
|
4649 } |
|
4650 mp_clamp (c); |
|
4651 return MP_OKAY; |
|
4652 } |
|
4653 |
|
4654 /* End: bn_mp_mul_2d.c */ |
|
4655 |
|
4656 /* Start: bn_mp_mul_d.c */ |
|
4657 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
4658 * |
|
4659 * LibTomMath is a library that provides multiple-precision |
|
4660 * integer arithmetic as well as number theoretic functionality. |
|
4661 * |
|
4662 * The library was designed directly after the MPI library by |
|
4663 * Michael Fromberger but has been written from scratch with |
|
4664 * additional optimizations in place. |
|
4665 * |
|
4666 * The library is free for all purposes without any express |
|
4667 * guarantee it works. |
|
4668 * |
|
4669 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
4670 */ |
15
|
4671 #include <ltc_tommath.h> |
3
|
4672 |
|
4673 /* multiply by a digit */ |
|
4674 int |
|
4675 mp_mul_d (mp_int * a, mp_digit b, mp_int * c) |
|
4676 { |
|
4677 mp_digit u, *tmpa, *tmpc; |
|
4678 mp_word r; |
|
4679 int ix, res, olduse; |
|
4680 |
|
4681 /* make sure c is big enough to hold a*b */ |
|
4682 if (c->alloc < a->used + 1) { |
|
4683 if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) { |
|
4684 return res; |
|
4685 } |
|
4686 } |
|
4687 |
|
4688 /* get the original destinations used count */ |
|
4689 olduse = c->used; |
|
4690 |
|
4691 /* set the sign */ |
|
4692 c->sign = a->sign; |
|
4693 |
|
4694 /* alias for a->dp [source] */ |
|
4695 tmpa = a->dp; |
|
4696 |
|
4697 /* alias for c->dp [dest] */ |
|
4698 tmpc = c->dp; |
|
4699 |
|
4700 /* zero carry */ |
|
4701 u = 0; |
|
4702 |
|
4703 /* compute columns */ |
|
4704 for (ix = 0; ix < a->used; ix++) { |
|
4705 /* compute product and carry sum for this term */ |
|
4706 r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b); |
|
4707 |
|
4708 /* mask off higher bits to get a single digit */ |
|
4709 *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK)); |
|
4710 |
|
4711 /* send carry into next iteration */ |
|
4712 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); |
|
4713 } |
|
4714 |
|
4715 /* store final carry [if any] */ |
|
4716 *tmpc++ = u; |
|
4717 |
|
4718 /* now zero digits above the top */ |
|
4719 while (ix++ < olduse) { |
|
4720 *tmpc++ = 0; |
|
4721 } |
|
4722 |
|
4723 /* set used count */ |
|
4724 c->used = a->used + 1; |
|
4725 mp_clamp(c); |
|
4726 |
|
4727 return MP_OKAY; |
|
4728 } |
|
4729 |
|
4730 /* End: bn_mp_mul_d.c */ |
|
4731 |
|
4732 /* Start: bn_mp_mulmod.c */ |
|
4733 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
4734 * |
|
4735 * LibTomMath is a library that provides multiple-precision |
|
4736 * integer arithmetic as well as number theoretic functionality. |
|
4737 * |
|
4738 * The library was designed directly after the MPI library by |
|
4739 * Michael Fromberger but has been written from scratch with |
|
4740 * additional optimizations in place. |
|
4741 * |
|
4742 * The library is free for all purposes without any express |
|
4743 * guarantee it works. |
|
4744 * |
|
4745 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
4746 */ |
15
|
4747 #include <ltc_tommath.h> |
3
|
4748 |
|
4749 /* d = a * b (mod c) */ |
|
4750 int |
|
4751 mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d) |
|
4752 { |
|
4753 int res; |
|
4754 mp_int t; |
|
4755 |
|
4756 if ((res = mp_init (&t)) != MP_OKAY) { |
|
4757 return res; |
|
4758 } |
|
4759 |
|
4760 if ((res = mp_mul (a, b, &t)) != MP_OKAY) { |
|
4761 mp_clear (&t); |
|
4762 return res; |
|
4763 } |
|
4764 res = mp_mod (&t, c, d); |
|
4765 mp_clear (&t); |
|
4766 return res; |
|
4767 } |
|
4768 |
|
4769 /* End: bn_mp_mulmod.c */ |
|
4770 |
|
4771 /* Start: bn_mp_n_root.c */ |
|
4772 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
4773 * |
|
4774 * LibTomMath is a library that provides multiple-precision |
|
4775 * integer arithmetic as well as number theoretic functionality. |
|
4776 * |
|
4777 * The library was designed directly after the MPI library by |
|
4778 * Michael Fromberger but has been written from scratch with |
|
4779 * additional optimizations in place. |
|
4780 * |
|
4781 * The library is free for all purposes without any express |
|
4782 * guarantee it works. |
|
4783 * |
|
4784 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
4785 */ |
15
|
4786 #include <ltc_tommath.h> |
3
|
4787 |
|
4788 /* find the n'th root of an integer |
|
4789 * |
|
4790 * Result found such that (c)**b <= a and (c+1)**b > a |
|
4791 * |
|
4792 * This algorithm uses Newton's approximation |
|
4793 * x[i+1] = x[i] - f(x[i])/f'(x[i]) |
|
4794 * which will find the root in log(N) time where |
|
4795 * each step involves a fair bit. This is not meant to |
|
4796 * find huge roots [square and cube, etc]. |
|
4797 */ |
|
4798 int mp_n_root (mp_int * a, mp_digit b, mp_int * c) |
|
4799 { |
|
4800 mp_int t1, t2, t3; |
|
4801 int res, neg; |
|
4802 |
|
4803 /* input must be positive if b is even */ |
|
4804 if ((b & 1) == 0 && a->sign == MP_NEG) { |
|
4805 return MP_VAL; |
|
4806 } |
|
4807 |
|
4808 if ((res = mp_init (&t1)) != MP_OKAY) { |
|
4809 return res; |
|
4810 } |
|
4811 |
|
4812 if ((res = mp_init (&t2)) != MP_OKAY) { |
|
4813 goto __T1; |
|
4814 } |
|
4815 |
|
4816 if ((res = mp_init (&t3)) != MP_OKAY) { |
|
4817 goto __T2; |
|
4818 } |
|
4819 |
|
4820 /* if a is negative fudge the sign but keep track */ |
|
4821 neg = a->sign; |
|
4822 a->sign = MP_ZPOS; |
|
4823 |
|
4824 /* t2 = 2 */ |
|
4825 mp_set (&t2, 2); |
|
4826 |
|
4827 do { |
|
4828 /* t1 = t2 */ |
|
4829 if ((res = mp_copy (&t2, &t1)) != MP_OKAY) { |
|
4830 goto __T3; |
|
4831 } |
|
4832 |
|
4833 /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */ |
|
4834 |
|
4835 /* t3 = t1**(b-1) */ |
|
4836 if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) { |
|
4837 goto __T3; |
|
4838 } |
|
4839 |
|
4840 /* numerator */ |
|
4841 /* t2 = t1**b */ |
|
4842 if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) { |
|
4843 goto __T3; |
|
4844 } |
|
4845 |
|
4846 /* t2 = t1**b - a */ |
|
4847 if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) { |
|
4848 goto __T3; |
|
4849 } |
|
4850 |
|
4851 /* denominator */ |
|
4852 /* t3 = t1**(b-1) * b */ |
|
4853 if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) { |
|
4854 goto __T3; |
|
4855 } |
|
4856 |
|
4857 /* t3 = (t1**b - a)/(b * t1**(b-1)) */ |
|
4858 if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) { |
|
4859 goto __T3; |
|
4860 } |
|
4861 |
|
4862 if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) { |
|
4863 goto __T3; |
|
4864 } |
|
4865 } while (mp_cmp (&t1, &t2) != MP_EQ); |
|
4866 |
|
4867 /* result can be off by a few so check */ |
|
4868 for (;;) { |
|
4869 if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) { |
|
4870 goto __T3; |
|
4871 } |
|
4872 |
|
4873 if (mp_cmp (&t2, a) == MP_GT) { |
|
4874 if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) { |
|
4875 goto __T3; |
|
4876 } |
|
4877 } else { |
|
4878 break; |
|
4879 } |
|
4880 } |
|
4881 |
|
4882 /* reset the sign of a first */ |
|
4883 a->sign = neg; |
|
4884 |
|
4885 /* set the result */ |
|
4886 mp_exch (&t1, c); |
|
4887 |
|
4888 /* set the sign of the result */ |
|
4889 c->sign = neg; |
|
4890 |
|
4891 res = MP_OKAY; |
|
4892 |
|
4893 __T3:mp_clear (&t3); |
|
4894 __T2:mp_clear (&t2); |
|
4895 __T1:mp_clear (&t1); |
|
4896 return res; |
|
4897 } |
|
4898 |
|
4899 /* End: bn_mp_n_root.c */ |
|
4900 |
|
4901 /* Start: bn_mp_neg.c */ |
|
4902 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
4903 * |
|
4904 * LibTomMath is a library that provides multiple-precision |
|
4905 * integer arithmetic as well as number theoretic functionality. |
|
4906 * |
|
4907 * The library was designed directly after the MPI library by |
|
4908 * Michael Fromberger but has been written from scratch with |
|
4909 * additional optimizations in place. |
|
4910 * |
|
4911 * The library is free for all purposes without any express |
|
4912 * guarantee it works. |
|
4913 * |
|
4914 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
4915 */ |
15
|
4916 #include <ltc_tommath.h> |
3
|
4917 |
|
4918 /* b = -a */ |
|
4919 int mp_neg (mp_int * a, mp_int * b) |
|
4920 { |
|
4921 int res; |
|
4922 if ((res = mp_copy (a, b)) != MP_OKAY) { |
|
4923 return res; |
|
4924 } |
|
4925 if (mp_iszero(b) != MP_YES) { |
|
4926 b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS; |
|
4927 } |
|
4928 return MP_OKAY; |
|
4929 } |
|
4930 |
|
4931 /* End: bn_mp_neg.c */ |
|
4932 |
|
4933 /* Start: bn_mp_or.c */ |
|
4934 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
4935 * |
|
4936 * LibTomMath is a library that provides multiple-precision |
|
4937 * integer arithmetic as well as number theoretic functionality. |
|
4938 * |
|
4939 * The library was designed directly after the MPI library by |
|
4940 * Michael Fromberger but has been written from scratch with |
|
4941 * additional optimizations in place. |
|
4942 * |
|
4943 * The library is free for all purposes without any express |
|
4944 * guarantee it works. |
|
4945 * |
|
4946 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
4947 */ |
15
|
4948 #include <ltc_tommath.h> |
3
|
4949 |
|
4950 /* OR two ints together */ |
|
4951 int mp_or (mp_int * a, mp_int * b, mp_int * c) |
|
4952 { |
|
4953 int res, ix, px; |
|
4954 mp_int t, *x; |
|
4955 |
|
4956 if (a->used > b->used) { |
|
4957 if ((res = mp_init_copy (&t, a)) != MP_OKAY) { |
|
4958 return res; |
|
4959 } |
|
4960 px = b->used; |
|
4961 x = b; |
|
4962 } else { |
|
4963 if ((res = mp_init_copy (&t, b)) != MP_OKAY) { |
|
4964 return res; |
|
4965 } |
|
4966 px = a->used; |
|
4967 x = a; |
|
4968 } |
|
4969 |
|
4970 for (ix = 0; ix < px; ix++) { |
|
4971 t.dp[ix] |= x->dp[ix]; |
|
4972 } |
|
4973 mp_clamp (&t); |
|
4974 mp_exch (c, &t); |
|
4975 mp_clear (&t); |
|
4976 return MP_OKAY; |
|
4977 } |
|
4978 |
|
4979 /* End: bn_mp_or.c */ |
|
4980 |
|
4981 /* Start: bn_mp_prime_fermat.c */ |
|
4982 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
4983 * |
|
4984 * LibTomMath is a library that provides multiple-precision |
|
4985 * integer arithmetic as well as number theoretic functionality. |
|
4986 * |
|
4987 * The library was designed directly after the MPI library by |
|
4988 * Michael Fromberger but has been written from scratch with |
|
4989 * additional optimizations in place. |
|
4990 * |
|
4991 * The library is free for all purposes without any express |
|
4992 * guarantee it works. |
|
4993 * |
|
4994 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
4995 */ |
15
|
4996 #include <ltc_tommath.h> |
3
|
4997 |
|
4998 /* performs one Fermat test. |
|
4999 * |
|
5000 * If "a" were prime then b**a == b (mod a) since the order of |
|
5001 * the multiplicative sub-group would be phi(a) = a-1. That means |
|
5002 * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a). |
|
5003 * |
|
5004 * Sets result to 1 if the congruence holds, or zero otherwise. |
|
5005 */ |
|
5006 int mp_prime_fermat (mp_int * a, mp_int * b, int *result) |
|
5007 { |
|
5008 mp_int t; |
|
5009 int err; |
|
5010 |
|
5011 /* default to composite */ |
|
5012 *result = MP_NO; |
|
5013 |
|
5014 /* ensure b > 1 */ |
|
5015 if (mp_cmp_d(b, 1) != MP_GT) { |
|
5016 return MP_VAL; |
|
5017 } |
|
5018 |
|
5019 /* init t */ |
|
5020 if ((err = mp_init (&t)) != MP_OKAY) { |
|
5021 return err; |
|
5022 } |
|
5023 |
|
5024 /* compute t = b**a mod a */ |
|
5025 if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) { |
|
5026 goto __T; |
|
5027 } |
|
5028 |
|
5029 /* is it equal to b? */ |
|
5030 if (mp_cmp (&t, b) == MP_EQ) { |
|
5031 *result = MP_YES; |
|
5032 } |
|
5033 |
|
5034 err = MP_OKAY; |
|
5035 __T:mp_clear (&t); |
|
5036 return err; |
|
5037 } |
|
5038 |
|
5039 /* End: bn_mp_prime_fermat.c */ |
|
5040 |
|
5041 /* Start: bn_mp_prime_is_divisible.c */ |
|
5042 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
5043 * |
|
5044 * LibTomMath is a library that provides multiple-precision |
|
5045 * integer arithmetic as well as number theoretic functionality. |
|
5046 * |
|
5047 * The library was designed directly after the MPI library by |
|
5048 * Michael Fromberger but has been written from scratch with |
|
5049 * additional optimizations in place. |
|
5050 * |
|
5051 * The library is free for all purposes without any express |
|
5052 * guarantee it works. |
|
5053 * |
|
5054 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
5055 */ |
15
|
5056 #include <ltc_tommath.h> |
3
|
5057 |
|
5058 /* determines if an integers is divisible by one |
|
5059 * of the first PRIME_SIZE primes or not |
|
5060 * |
|
5061 * sets result to 0 if not, 1 if yes |
|
5062 */ |
|
5063 int mp_prime_is_divisible (mp_int * a, int *result) |
|
5064 { |
|
5065 int err, ix; |
|
5066 mp_digit res; |
|
5067 |
|
5068 /* default to not */ |
|
5069 *result = MP_NO; |
|
5070 |
|
5071 for (ix = 0; ix < PRIME_SIZE; ix++) { |
|
5072 /* what is a mod __prime_tab[ix] */ |
|
5073 if ((err = mp_mod_d (a, __prime_tab[ix], &res)) != MP_OKAY) { |
|
5074 return err; |
|
5075 } |
|
5076 |
|
5077 /* is the residue zero? */ |
|
5078 if (res == 0) { |
|
5079 *result = MP_YES; |
|
5080 return MP_OKAY; |
|
5081 } |
|
5082 } |
|
5083 |
|
5084 return MP_OKAY; |
|
5085 } |
|
5086 |
|
5087 /* End: bn_mp_prime_is_divisible.c */ |
|
5088 |
|
5089 /* Start: bn_mp_prime_is_prime.c */ |
|
5090 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
5091 * |
|
5092 * LibTomMath is a library that provides multiple-precision |
|
5093 * integer arithmetic as well as number theoretic functionality. |
|
5094 * |
|
5095 * The library was designed directly after the MPI library by |
|
5096 * Michael Fromberger but has been written from scratch with |
|
5097 * additional optimizations in place. |
|
5098 * |
|
5099 * The library is free for all purposes without any express |
|
5100 * guarantee it works. |
|
5101 * |
|
5102 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
5103 */ |
15
|
5104 #include <ltc_tommath.h> |
3
|
5105 |
|
5106 /* performs a variable number of rounds of Miller-Rabin |
|
5107 * |
|
5108 * Probability of error after t rounds is no more than |
|
5109 * (1/4)^t when 1 <= t <= PRIME_SIZE |
|
5110 * |
|
5111 * Sets result to 1 if probably prime, 0 otherwise |
|
5112 */ |
|
5113 int mp_prime_is_prime (mp_int * a, int t, int *result) |
|
5114 { |
|
5115 mp_int b; |
|
5116 int ix, err, res; |
|
5117 |
|
5118 /* default to no */ |
|
5119 *result = MP_NO; |
|
5120 |
|
5121 /* valid value of t? */ |
|
5122 if (t <= 0 || t > PRIME_SIZE) { |
|
5123 return MP_VAL; |
|
5124 } |
|
5125 |
|
5126 /* is the input equal to one of the primes in the table? */ |
|
5127 for (ix = 0; ix < PRIME_SIZE; ix++) { |
|
5128 if (mp_cmp_d(a, __prime_tab[ix]) == MP_EQ) { |
|
5129 *result = 1; |
|
5130 return MP_OKAY; |
|
5131 } |
|
5132 } |
|
5133 |
|
5134 /* first perform trial division */ |
|
5135 if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) { |
|
5136 return err; |
|
5137 } |
|
5138 |
|
5139 /* return if it was trivially divisible */ |
|
5140 if (res == MP_YES) { |
|
5141 return MP_OKAY; |
|
5142 } |
|
5143 |
|
5144 /* now perform the miller-rabin rounds */ |
|
5145 if ((err = mp_init (&b)) != MP_OKAY) { |
|
5146 return err; |
|
5147 } |
|
5148 |
|
5149 for (ix = 0; ix < t; ix++) { |
|
5150 /* set the prime */ |
|
5151 mp_set (&b, __prime_tab[ix]); |
|
5152 |
|
5153 if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) { |
|
5154 goto __B; |
|
5155 } |
|
5156 |
|
5157 if (res == MP_NO) { |
|
5158 goto __B; |
|
5159 } |
|
5160 } |
|
5161 |
|
5162 /* passed the test */ |
|
5163 *result = MP_YES; |
|
5164 __B:mp_clear (&b); |
|
5165 return err; |
|
5166 } |
|
5167 |
|
5168 /* End: bn_mp_prime_is_prime.c */ |
|
5169 |
|
5170 /* Start: bn_mp_prime_miller_rabin.c */ |
|
5171 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
5172 * |
|
5173 * LibTomMath is a library that provides multiple-precision |
|
5174 * integer arithmetic as well as number theoretic functionality. |
|
5175 * |
|
5176 * The library was designed directly after the MPI library by |
|
5177 * Michael Fromberger but has been written from scratch with |
|
5178 * additional optimizations in place. |
|
5179 * |
|
5180 * The library is free for all purposes without any express |
|
5181 * guarantee it works. |
|
5182 * |
|
5183 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
5184 */ |
15
|
5185 #include <ltc_tommath.h> |
3
|
5186 |
|
5187 /* Miller-Rabin test of "a" to the base of "b" as described in |
|
5188 * HAC pp. 139 Algorithm 4.24 |
|
5189 * |
|
5190 * Sets result to 0 if definitely composite or 1 if probably prime. |
|
5191 * Randomly the chance of error is no more than 1/4 and often |
|
5192 * very much lower. |
|
5193 */ |
|
5194 int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result) |
|
5195 { |
|
5196 mp_int n1, y, r; |
|
5197 int s, j, err; |
|
5198 |
|
5199 /* default */ |
|
5200 *result = MP_NO; |
|
5201 |
|
5202 /* ensure b > 1 */ |
|
5203 if (mp_cmp_d(b, 1) != MP_GT) { |
|
5204 return MP_VAL; |
|
5205 } |
|
5206 |
|
5207 /* get n1 = a - 1 */ |
|
5208 if ((err = mp_init_copy (&n1, a)) != MP_OKAY) { |
|
5209 return err; |
|
5210 } |
|
5211 if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) { |
|
5212 goto __N1; |
|
5213 } |
|
5214 |
|
5215 /* set 2**s * r = n1 */ |
|
5216 if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) { |
|
5217 goto __N1; |
|
5218 } |
|
5219 |
|
5220 /* count the number of least significant bits |
|
5221 * which are zero |
|
5222 */ |
|
5223 s = mp_cnt_lsb(&r); |
|
5224 |
|
5225 /* now divide n - 1 by 2**s */ |
|
5226 if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) { |
|
5227 goto __R; |
|
5228 } |
|
5229 |
|
5230 /* compute y = b**r mod a */ |
|
5231 if ((err = mp_init (&y)) != MP_OKAY) { |
|
5232 goto __R; |
|
5233 } |
|
5234 if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) { |
|
5235 goto __Y; |
|
5236 } |
|
5237 |
|
5238 /* if y != 1 and y != n1 do */ |
|
5239 if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) { |
|
5240 j = 1; |
|
5241 /* while j <= s-1 and y != n1 */ |
|
5242 while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) { |
|
5243 if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) { |
|
5244 goto __Y; |
|
5245 } |
|
5246 |
|
5247 /* if y == 1 then composite */ |
|
5248 if (mp_cmp_d (&y, 1) == MP_EQ) { |
|
5249 goto __Y; |
|
5250 } |
|
5251 |
|
5252 ++j; |
|
5253 } |
|
5254 |
|
5255 /* if y != n1 then composite */ |
|
5256 if (mp_cmp (&y, &n1) != MP_EQ) { |
|
5257 goto __Y; |
|
5258 } |
|
5259 } |
|
5260 |
|
5261 /* probably prime now */ |
|
5262 *result = MP_YES; |
|
5263 __Y:mp_clear (&y); |
|
5264 __R:mp_clear (&r); |
|
5265 __N1:mp_clear (&n1); |
|
5266 return err; |
|
5267 } |
|
5268 |
|
5269 /* End: bn_mp_prime_miller_rabin.c */ |
|
5270 |
|
5271 /* Start: bn_mp_prime_next_prime.c */ |
|
5272 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
5273 * |
|
5274 * LibTomMath is a library that provides multiple-precision |
|
5275 * integer arithmetic as well as number theoretic functionality. |
|
5276 * |
|
5277 * The library was designed directly after the MPI library by |
|
5278 * Michael Fromberger but has been written from scratch with |
|
5279 * additional optimizations in place. |
|
5280 * |
|
5281 * The library is free for all purposes without any express |
|
5282 * guarantee it works. |
|
5283 * |
|
5284 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
5285 */ |
15
|
5286 #include <ltc_tommath.h> |
3
|
5287 |
|
5288 /* finds the next prime after the number "a" using "t" trials |
|
5289 * of Miller-Rabin. |
|
5290 * |
|
5291 * bbs_style = 1 means the prime must be congruent to 3 mod 4 |
|
5292 */ |
|
5293 int mp_prime_next_prime(mp_int *a, int t, int bbs_style) |
|
5294 { |
|
5295 int err, res, x, y; |
|
5296 mp_digit res_tab[PRIME_SIZE], step, kstep; |
|
5297 mp_int b; |
|
5298 |
|
5299 /* ensure t is valid */ |
|
5300 if (t <= 0 || t > PRIME_SIZE) { |
|
5301 return MP_VAL; |
|
5302 } |
|
5303 |
|
5304 /* force positive */ |
|
5305 a->sign = MP_ZPOS; |
|
5306 |
|
5307 /* simple algo if a is less than the largest prime in the table */ |
|
5308 if (mp_cmp_d(a, __prime_tab[PRIME_SIZE-1]) == MP_LT) { |
|
5309 /* find which prime it is bigger than */ |
|
5310 for (x = PRIME_SIZE - 2; x >= 0; x--) { |
|
5311 if (mp_cmp_d(a, __prime_tab[x]) != MP_LT) { |
|
5312 if (bbs_style == 1) { |
|
5313 /* ok we found a prime smaller or |
|
5314 * equal [so the next is larger] |
|
5315 * |
|
5316 * however, the prime must be |
|
5317 * congruent to 3 mod 4 |
|
5318 */ |
|
5319 if ((__prime_tab[x + 1] & 3) != 3) { |
|
5320 /* scan upwards for a prime congruent to 3 mod 4 */ |
|
5321 for (y = x + 1; y < PRIME_SIZE; y++) { |
|
5322 if ((__prime_tab[y] & 3) == 3) { |
|
5323 mp_set(a, __prime_tab[y]); |
|
5324 return MP_OKAY; |
|
5325 } |
|
5326 } |
|
5327 } |
|
5328 } else { |
|
5329 mp_set(a, __prime_tab[x + 1]); |
|
5330 return MP_OKAY; |
|
5331 } |
|
5332 } |
|
5333 } |
|
5334 /* at this point a maybe 1 */ |
|
5335 if (mp_cmp_d(a, 1) == MP_EQ) { |
|
5336 mp_set(a, 2); |
|
5337 return MP_OKAY; |
|
5338 } |
|
5339 /* fall through to the sieve */ |
|
5340 } |
|
5341 |
|
5342 /* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */ |
|
5343 if (bbs_style == 1) { |
|
5344 kstep = 4; |
|
5345 } else { |
|
5346 kstep = 2; |
|
5347 } |
|
5348 |
|
5349 /* at this point we will use a combination of a sieve and Miller-Rabin */ |
|
5350 |
|
5351 if (bbs_style == 1) { |
|
5352 /* if a mod 4 != 3 subtract the correct value to make it so */ |
|
5353 if ((a->dp[0] & 3) != 3) { |
|
5354 if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; }; |
|
5355 } |
|
5356 } else { |
|
5357 if (mp_iseven(a) == 1) { |
|
5358 /* force odd */ |
|
5359 if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { |
|
5360 return err; |
|
5361 } |
|
5362 } |
|
5363 } |
|
5364 |
|
5365 /* generate the restable */ |
|
5366 for (x = 1; x < PRIME_SIZE; x++) { |
|
5367 if ((err = mp_mod_d(a, __prime_tab[x], res_tab + x)) != MP_OKAY) { |
|
5368 return err; |
|
5369 } |
|
5370 } |
|
5371 |
|
5372 /* init temp used for Miller-Rabin Testing */ |
|
5373 if ((err = mp_init(&b)) != MP_OKAY) { |
|
5374 return err; |
|
5375 } |
|
5376 |
|
5377 for (;;) { |
|
5378 /* skip to the next non-trivially divisible candidate */ |
|
5379 step = 0; |
|
5380 do { |
|
5381 /* y == 1 if any residue was zero [e.g. cannot be prime] */ |
|
5382 y = 0; |
|
5383 |
|
5384 /* increase step to next candidate */ |
|
5385 step += kstep; |
|
5386 |
|
5387 /* compute the new residue without using division */ |
|
5388 for (x = 1; x < PRIME_SIZE; x++) { |
|
5389 /* add the step to each residue */ |
|
5390 res_tab[x] += kstep; |
|
5391 |
|
5392 /* subtract the modulus [instead of using division] */ |
|
5393 if (res_tab[x] >= __prime_tab[x]) { |
|
5394 res_tab[x] -= __prime_tab[x]; |
|
5395 } |
|
5396 |
|
5397 /* set flag if zero */ |
|
5398 if (res_tab[x] == 0) { |
|
5399 y = 1; |
|
5400 } |
|
5401 } |
|
5402 } while (y == 1 && step < ((((mp_digit)1)<<DIGIT_BIT) - kstep)); |
|
5403 |
|
5404 /* add the step */ |
|
5405 if ((err = mp_add_d(a, step, a)) != MP_OKAY) { |
|
5406 goto __ERR; |
|
5407 } |
|
5408 |
|
5409 /* if didn't pass sieve and step == MAX then skip test */ |
|
5410 if (y == 1 && step >= ((((mp_digit)1)<<DIGIT_BIT) - kstep)) { |
|
5411 continue; |
|
5412 } |
|
5413 |
|
5414 /* is this prime? */ |
|
5415 for (x = 0; x < t; x++) { |
|
5416 mp_set(&b, __prime_tab[t]); |
|
5417 if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { |
|
5418 goto __ERR; |
|
5419 } |
|
5420 if (res == MP_NO) { |
|
5421 break; |
|
5422 } |
|
5423 } |
|
5424 |
|
5425 if (res == MP_YES) { |
|
5426 break; |
|
5427 } |
|
5428 } |
|
5429 |
|
5430 err = MP_OKAY; |
|
5431 __ERR: |
|
5432 mp_clear(&b); |
|
5433 return err; |
|
5434 } |
|
5435 |
|
5436 |
|
5437 /* End: bn_mp_prime_next_prime.c */ |
|
5438 |
|
5439 /* Start: bn_mp_prime_random_ex.c */ |
|
5440 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
5441 * |
|
5442 * LibTomMath is a library that provides multiple-precision |
|
5443 * integer arithmetic as well as number theoretic functionality. |
|
5444 * |
|
5445 * The library was designed directly after the MPI library by |
|
5446 * Michael Fromberger but has been written from scratch with |
|
5447 * additional optimizations in place. |
|
5448 * |
|
5449 * The library is free for all purposes without any express |
|
5450 * guarantee it works. |
|
5451 * |
|
5452 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
5453 */ |
15
|
5454 #include <ltc_tommath.h> |
3
|
5455 |
|
5456 /* makes a truly random prime of a given size (bits), |
|
5457 * |
|
5458 * Flags are as follows: |
|
5459 * |
|
5460 * LTM_PRIME_BBS - make prime congruent to 3 mod 4 |
|
5461 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) |
|
5462 * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero |
|
5463 * LTM_PRIME_2MSB_ON - make the 2nd highest bit one |
|
5464 * |
|
5465 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can |
|
5466 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself |
|
5467 * so it can be NULL |
|
5468 * |
|
5469 */ |
|
5470 |
|
5471 /* This is possibly the mother of all prime generation functions, muahahahahaha! */ |
|
5472 int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat) |
|
5473 { |
|
5474 unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb; |
|
5475 int res, err, bsize, maskOR_msb_offset; |
|
5476 |
|
5477 /* sanity check the input */ |
|
5478 if (size <= 1 || t <= 0) { |
|
5479 return MP_VAL; |
|
5480 } |
|
5481 |
|
5482 /* LTM_PRIME_SAFE implies LTM_PRIME_BBS */ |
|
5483 if (flags & LTM_PRIME_SAFE) { |
|
5484 flags |= LTM_PRIME_BBS; |
|
5485 } |
|
5486 |
|
5487 /* calc the byte size */ |
|
5488 bsize = (size>>3)+(size&7?1:0); |
|
5489 |
|
5490 /* we need a buffer of bsize bytes */ |
|
5491 tmp = OPT_CAST(unsigned char) XMALLOC(bsize); |
|
5492 if (tmp == NULL) { |
|
5493 return MP_MEM; |
|
5494 } |
|
5495 |
|
5496 /* calc the maskAND value for the MSbyte*/ |
|
5497 maskAND = 0xFF >> (8 - (size & 7)); |
|
5498 |
|
5499 /* calc the maskOR_msb */ |
|
5500 maskOR_msb = 0; |
|
5501 maskOR_msb_offset = (size - 2) >> 3; |
|
5502 if (flags & LTM_PRIME_2MSB_ON) { |
|
5503 maskOR_msb |= 1 << ((size - 2) & 7); |
|
5504 } else if (flags & LTM_PRIME_2MSB_OFF) { |
|
5505 maskAND &= ~(1 << ((size - 2) & 7)); |
|
5506 } |
|
5507 |
|
5508 /* get the maskOR_lsb */ |
|
5509 maskOR_lsb = 0; |
|
5510 if (flags & LTM_PRIME_BBS) { |
|
5511 maskOR_lsb |= 3; |
|
5512 } |
|
5513 |
|
5514 do { |
|
5515 /* read the bytes */ |
|
5516 if (cb(tmp, bsize, dat) != bsize) { |
|
5517 err = MP_VAL; |
|
5518 goto error; |
|
5519 } |
|
5520 |
|
5521 /* work over the MSbyte */ |
|
5522 tmp[0] &= maskAND; |
|
5523 tmp[0] |= 1 << ((size - 1) & 7); |
|
5524 |
|
5525 /* mix in the maskORs */ |
|
5526 tmp[maskOR_msb_offset] |= maskOR_msb; |
|
5527 tmp[bsize-1] |= maskOR_lsb; |
|
5528 |
|
5529 /* read it in */ |
|
5530 if ((err = mp_read_unsigned_bin(a, tmp, bsize)) != MP_OKAY) { goto error; } |
|
5531 |
|
5532 /* is it prime? */ |
|
5533 if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; } |
|
5534 |
|
5535 if (flags & LTM_PRIME_SAFE) { |
|
5536 /* see if (a-1)/2 is prime */ |
|
5537 if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { goto error; } |
|
5538 if ((err = mp_div_2(a, a)) != MP_OKAY) { goto error; } |
|
5539 |
|
5540 /* is it prime? */ |
|
5541 if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; } |
|
5542 } |
|
5543 } while (res == MP_NO); |
|
5544 |
|
5545 if (flags & LTM_PRIME_SAFE) { |
|
5546 /* restore a to the original value */ |
|
5547 if ((err = mp_mul_2(a, a)) != MP_OKAY) { goto error; } |
|
5548 if ((err = mp_add_d(a, 1, a)) != MP_OKAY) { goto error; } |
|
5549 } |
|
5550 |
|
5551 err = MP_OKAY; |
|
5552 error: |
|
5553 XFREE(tmp); |
|
5554 return err; |
|
5555 } |
|
5556 |
|
5557 |
|
5558 |
|
5559 /* End: bn_mp_prime_random_ex.c */ |
|
5560 |
|
5561 /* Start: bn_mp_radix_size.c */ |
|
5562 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
5563 * |
|
5564 * LibTomMath is a library that provides multiple-precision |
|
5565 * integer arithmetic as well as number theoretic functionality. |
|
5566 * |
|
5567 * The library was designed directly after the MPI library by |
|
5568 * Michael Fromberger but has been written from scratch with |
|
5569 * additional optimizations in place. |
|
5570 * |
|
5571 * The library is free for all purposes without any express |
|
5572 * guarantee it works. |
|
5573 * |
|
5574 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
5575 */ |
15
|
5576 #include <ltc_tommath.h> |
3
|
5577 |
|
5578 /* returns size of ASCII reprensentation */ |
|
5579 int mp_radix_size (mp_int * a, int radix, int *size) |
|
5580 { |
|
5581 int res, digs; |
|
5582 mp_int t; |
|
5583 mp_digit d; |
|
5584 |
|
5585 *size = 0; |
|
5586 |
|
5587 /* special case for binary */ |
|
5588 if (radix == 2) { |
|
5589 *size = mp_count_bits (a) + (a->sign == MP_NEG ? 1 : 0) + 1; |
|
5590 return MP_OKAY; |
|
5591 } |
|
5592 |
|
5593 /* make sure the radix is in range */ |
|
5594 if (radix < 2 || radix > 64) { |
|
5595 return MP_VAL; |
|
5596 } |
|
5597 |
|
5598 /* init a copy of the input */ |
|
5599 if ((res = mp_init_copy (&t, a)) != MP_OKAY) { |
|
5600 return res; |
|
5601 } |
|
5602 |
|
5603 /* digs is the digit count */ |
|
5604 digs = 0; |
|
5605 |
|
5606 /* if it's negative add one for the sign */ |
|
5607 if (t.sign == MP_NEG) { |
|
5608 ++digs; |
|
5609 t.sign = MP_ZPOS; |
|
5610 } |
|
5611 |
|
5612 /* fetch out all of the digits */ |
|
5613 while (mp_iszero (&t) == 0) { |
|
5614 if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) { |
|
5615 mp_clear (&t); |
|
5616 return res; |
|
5617 } |
|
5618 ++digs; |
|
5619 } |
|
5620 mp_clear (&t); |
|
5621 |
|
5622 /* return digs + 1, the 1 is for the NULL byte that would be required. */ |
|
5623 *size = digs + 1; |
|
5624 return MP_OKAY; |
|
5625 } |
|
5626 |
|
5627 |
|
5628 /* End: bn_mp_radix_size.c */ |
|
5629 |
|
5630 /* Start: bn_mp_radix_smap.c */ |
|
5631 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
5632 * |
|
5633 * LibTomMath is a library that provides multiple-precision |
|
5634 * integer arithmetic as well as number theoretic functionality. |
|
5635 * |
|
5636 * The library was designed directly after the MPI library by |
|
5637 * Michael Fromberger but has been written from scratch with |
|
5638 * additional optimizations in place. |
|
5639 * |
|
5640 * The library is free for all purposes without any express |
|
5641 * guarantee it works. |
|
5642 * |
|
5643 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
5644 */ |
15
|
5645 #include <ltc_tommath.h> |
3
|
5646 |
|
5647 /* chars used in radix conversions */ |
|
5648 const char *mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/"; |
|
5649 |
|
5650 /* End: bn_mp_radix_smap.c */ |
|
5651 |
|
5652 /* Start: bn_mp_rand.c */ |
|
5653 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
5654 * |
|
5655 * LibTomMath is a library that provides multiple-precision |
|
5656 * integer arithmetic as well as number theoretic functionality. |
|
5657 * |
|
5658 * The library was designed directly after the MPI library by |
|
5659 * Michael Fromberger but has been written from scratch with |
|
5660 * additional optimizations in place. |
|
5661 * |
|
5662 * The library is free for all purposes without any express |
|
5663 * guarantee it works. |
|
5664 * |
|
5665 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
5666 */ |
15
|
5667 #include <ltc_tommath.h> |
3
|
5668 |
|
5669 /* makes a pseudo-random int of a given size */ |
|
5670 int |
|
5671 mp_rand (mp_int * a, int digits) |
|
5672 { |
|
5673 int res; |
|
5674 mp_digit d; |
|
5675 |
|
5676 mp_zero (a); |
|
5677 if (digits <= 0) { |
|
5678 return MP_OKAY; |
|
5679 } |
|
5680 |
|
5681 /* first place a random non-zero digit */ |
|
5682 do { |
|
5683 d = ((mp_digit) abs (rand ())); |
|
5684 } while (d == 0); |
|
5685 |
|
5686 if ((res = mp_add_d (a, d, a)) != MP_OKAY) { |
|
5687 return res; |
|
5688 } |
|
5689 |
|
5690 while (digits-- > 0) { |
|
5691 if ((res = mp_lshd (a, 1)) != MP_OKAY) { |
|
5692 return res; |
|
5693 } |
|
5694 |
|
5695 if ((res = mp_add_d (a, ((mp_digit) abs (rand ())), a)) != MP_OKAY) { |
|
5696 return res; |
|
5697 } |
|
5698 } |
|
5699 |
|
5700 return MP_OKAY; |
|
5701 } |
|
5702 |
|
5703 /* End: bn_mp_rand.c */ |
|
5704 |
|
5705 /* Start: bn_mp_read_radix.c */ |
|
5706 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
5707 * |
|
5708 * LibTomMath is a library that provides multiple-precision |
|
5709 * integer arithmetic as well as number theoretic functionality. |
|
5710 * |
|
5711 * The library was designed directly after the MPI library by |
|
5712 * Michael Fromberger but has been written from scratch with |
|
5713 * additional optimizations in place. |
|
5714 * |
|
5715 * The library is free for all purposes without any express |
|
5716 * guarantee it works. |
|
5717 * |
|
5718 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
5719 */ |
15
|
5720 #include <ltc_tommath.h> |
3
|
5721 |
|
5722 /* read a string [ASCII] in a given radix */ |
|
5723 int mp_read_radix (mp_int * a, char *str, int radix) |
|
5724 { |
|
5725 int y, res, neg; |
|
5726 char ch; |
|
5727 |
|
5728 /* make sure the radix is ok */ |
|
5729 if (radix < 2 || radix > 64) { |
|
5730 return MP_VAL; |
|
5731 } |
|
5732 |
|
5733 /* if the leading digit is a |
|
5734 * minus set the sign to negative. |
|
5735 */ |
|
5736 if (*str == '-') { |
|
5737 ++str; |
|
5738 neg = MP_NEG; |
|
5739 } else { |
|
5740 neg = MP_ZPOS; |
|
5741 } |
|
5742 |
|
5743 /* set the integer to the default of zero */ |
|
5744 mp_zero (a); |
|
5745 |
|
5746 /* process each digit of the string */ |
|
5747 while (*str) { |
|
5748 /* if the radix < 36 the conversion is case insensitive |
|
5749 * this allows numbers like 1AB and 1ab to represent the same value |
|
5750 * [e.g. in hex] |
|
5751 */ |
|
5752 ch = (char) ((radix < 36) ? toupper (*str) : *str); |
|
5753 for (y = 0; y < 64; y++) { |
|
5754 if (ch == mp_s_rmap[y]) { |
|
5755 break; |
|
5756 } |
|
5757 } |
|
5758 |
|
5759 /* if the char was found in the map |
|
5760 * and is less than the given radix add it |
|
5761 * to the number, otherwise exit the loop. |
|
5762 */ |
|
5763 if (y < radix) { |
|
5764 if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) { |
|
5765 return res; |
|
5766 } |
|
5767 if ((res = mp_add_d (a, (mp_digit) y, a)) != MP_OKAY) { |
|
5768 return res; |
|
5769 } |
|
5770 } else { |
|
5771 break; |
|
5772 } |
|
5773 ++str; |
|
5774 } |
|
5775 |
|
5776 /* set the sign only if a != 0 */ |
|
5777 if (mp_iszero(a) != 1) { |
|
5778 a->sign = neg; |
|
5779 } |
|
5780 return MP_OKAY; |
|
5781 } |
|
5782 |
|
5783 /* End: bn_mp_read_radix.c */ |
|
5784 |
|
5785 /* Start: bn_mp_read_signed_bin.c */ |
|
5786 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
5787 * |
|
5788 * LibTomMath is a library that provides multiple-precision |
|
5789 * integer arithmetic as well as number theoretic functionality. |
|
5790 * |
|
5791 * The library was designed directly after the MPI library by |
|
5792 * Michael Fromberger but has been written from scratch with |
|
5793 * additional optimizations in place. |
|
5794 * |
|
5795 * The library is free for all purposes without any express |
|
5796 * guarantee it works. |
|
5797 * |
|
5798 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
5799 */ |
15
|
5800 #include <ltc_tommath.h> |
3
|
5801 |
|
5802 /* read signed bin, big endian, first byte is 0==positive or 1==negative */ |
|
5803 int |
|
5804 mp_read_signed_bin (mp_int * a, unsigned char *b, int c) |
|
5805 { |
|
5806 int res; |
|
5807 |
|
5808 /* read magnitude */ |
|
5809 if ((res = mp_read_unsigned_bin (a, b + 1, c - 1)) != MP_OKAY) { |
|
5810 return res; |
|
5811 } |
|
5812 |
|
5813 /* first byte is 0 for positive, non-zero for negative */ |
|
5814 if (b[0] == 0) { |
|
5815 a->sign = MP_ZPOS; |
|
5816 } else { |
|
5817 a->sign = MP_NEG; |
|
5818 } |
|
5819 |
|
5820 return MP_OKAY; |
|
5821 } |
|
5822 |
|
5823 /* End: bn_mp_read_signed_bin.c */ |
|
5824 |
|
5825 /* Start: bn_mp_read_unsigned_bin.c */ |
|
5826 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
5827 * |
|
5828 * LibTomMath is a library that provides multiple-precision |
|
5829 * integer arithmetic as well as number theoretic functionality. |
|
5830 * |
|
5831 * The library was designed directly after the MPI library by |
|
5832 * Michael Fromberger but has been written from scratch with |
|
5833 * additional optimizations in place. |
|
5834 * |
|
5835 * The library is free for all purposes without any express |
|
5836 * guarantee it works. |
|
5837 * |
|
5838 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
5839 */ |
15
|
5840 #include <ltc_tommath.h> |
3
|
5841 |
|
5842 /* reads a unsigned char array, assumes the msb is stored first [big endian] */ |
|
5843 int |
|
5844 mp_read_unsigned_bin (mp_int * a, unsigned char *b, int c) |
|
5845 { |
|
5846 int res; |
|
5847 |
|
5848 /* make sure there are at least two digits */ |
|
5849 if (a->alloc < 2) { |
|
5850 if ((res = mp_grow(a, 2)) != MP_OKAY) { |
|
5851 return res; |
|
5852 } |
|
5853 } |
|
5854 |
|
5855 /* zero the int */ |
|
5856 mp_zero (a); |
|
5857 |
|
5858 /* read the bytes in */ |
|
5859 while (c-- > 0) { |
|
5860 if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) { |
|
5861 return res; |
|
5862 } |
|
5863 |
|
5864 #ifndef MP_8BIT |
|
5865 a->dp[0] |= *b++; |
|
5866 a->used += 1; |
|
5867 #else |
|
5868 a->dp[0] = (*b & MP_MASK); |
|
5869 a->dp[1] |= ((*b++ >> 7U) & 1); |
|
5870 a->used += 2; |
|
5871 #endif |
|
5872 } |
|
5873 mp_clamp (a); |
|
5874 return MP_OKAY; |
|
5875 } |
|
5876 |
|
5877 /* End: bn_mp_read_unsigned_bin.c */ |
|
5878 |
|
5879 /* Start: bn_mp_reduce.c */ |
|
5880 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
5881 * |
|
5882 * LibTomMath is a library that provides multiple-precision |
|
5883 * integer arithmetic as well as number theoretic functionality. |
|
5884 * |
|
5885 * The library was designed directly after the MPI library by |
|
5886 * Michael Fromberger but has been written from scratch with |
|
5887 * additional optimizations in place. |
|
5888 * |
|
5889 * The library is free for all purposes without any express |
|
5890 * guarantee it works. |
|
5891 * |
|
5892 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
5893 */ |
15
|
5894 #include <ltc_tommath.h> |
3
|
5895 |
|
5896 /* reduces x mod m, assumes 0 < x < m**2, mu is |
|
5897 * precomputed via mp_reduce_setup. |
|
5898 * From HAC pp.604 Algorithm 14.42 |
|
5899 */ |
|
5900 int |
|
5901 mp_reduce (mp_int * x, mp_int * m, mp_int * mu) |
|
5902 { |
|
5903 mp_int q; |
|
5904 int res, um = m->used; |
|
5905 |
|
5906 /* q = x */ |
|
5907 if ((res = mp_init_copy (&q, x)) != MP_OKAY) { |
|
5908 return res; |
|
5909 } |
|
5910 |
|
5911 /* q1 = x / b**(k-1) */ |
|
5912 mp_rshd (&q, um - 1); |
|
5913 |
|
5914 /* according to HAC this optimization is ok */ |
|
5915 if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) { |
|
5916 if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) { |
|
5917 goto CLEANUP; |
|
5918 } |
|
5919 } else { |
|
5920 if ((res = s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) { |
|
5921 goto CLEANUP; |
|
5922 } |
|
5923 } |
|
5924 |
|
5925 /* q3 = q2 / b**(k+1) */ |
|
5926 mp_rshd (&q, um + 1); |
|
5927 |
|
5928 /* x = x mod b**(k+1), quick (no division) */ |
|
5929 if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) { |
|
5930 goto CLEANUP; |
|
5931 } |
|
5932 |
|
5933 /* q = q * m mod b**(k+1), quick (no division) */ |
|
5934 if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) { |
|
5935 goto CLEANUP; |
|
5936 } |
|
5937 |
|
5938 /* x = x - q */ |
|
5939 if ((res = mp_sub (x, &q, x)) != MP_OKAY) { |
|
5940 goto CLEANUP; |
|
5941 } |
|
5942 |
|
5943 /* If x < 0, add b**(k+1) to it */ |
|
5944 if (mp_cmp_d (x, 0) == MP_LT) { |
|
5945 mp_set (&q, 1); |
|
5946 if ((res = mp_lshd (&q, um + 1)) != MP_OKAY) |
|
5947 goto CLEANUP; |
|
5948 if ((res = mp_add (x, &q, x)) != MP_OKAY) |
|
5949 goto CLEANUP; |
|
5950 } |
|
5951 |
|
5952 /* Back off if it's too big */ |
|
5953 while (mp_cmp (x, m) != MP_LT) { |
|
5954 if ((res = s_mp_sub (x, m, x)) != MP_OKAY) { |
|
5955 goto CLEANUP; |
|
5956 } |
|
5957 } |
|
5958 |
|
5959 CLEANUP: |
|
5960 mp_clear (&q); |
|
5961 |
|
5962 return res; |
|
5963 } |
|
5964 |
|
5965 /* End: bn_mp_reduce.c */ |
|
5966 |
|
5967 /* Start: bn_mp_reduce_2k.c */ |
|
5968 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
5969 * |
|
5970 * LibTomMath is a library that provides multiple-precision |
|
5971 * integer arithmetic as well as number theoretic functionality. |
|
5972 * |
|
5973 * The library was designed directly after the MPI library by |
|
5974 * Michael Fromberger but has been written from scratch with |
|
5975 * additional optimizations in place. |
|
5976 * |
|
5977 * The library is free for all purposes without any express |
|
5978 * guarantee it works. |
|
5979 * |
|
5980 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
5981 */ |
15
|
5982 #include <ltc_tommath.h> |
3
|
5983 |
|
5984 /* reduces a modulo n where n is of the form 2**p - d */ |
|
5985 int |
|
5986 mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d) |
|
5987 { |
|
5988 mp_int q; |
|
5989 int p, res; |
|
5990 |
|
5991 if ((res = mp_init(&q)) != MP_OKAY) { |
|
5992 return res; |
|
5993 } |
|
5994 |
|
5995 p = mp_count_bits(n); |
|
5996 top: |
|
5997 /* q = a/2**p, a = a mod 2**p */ |
|
5998 if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { |
|
5999 goto ERR; |
|
6000 } |
|
6001 |
|
6002 if (d != 1) { |
|
6003 /* q = q * d */ |
|
6004 if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) { |
|
6005 goto ERR; |
|
6006 } |
|
6007 } |
|
6008 |
|
6009 /* a = a + q */ |
|
6010 if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { |
|
6011 goto ERR; |
|
6012 } |
|
6013 |
|
6014 if (mp_cmp_mag(a, n) != MP_LT) { |
|
6015 s_mp_sub(a, n, a); |
|
6016 goto top; |
|
6017 } |
|
6018 |
|
6019 ERR: |
|
6020 mp_clear(&q); |
|
6021 return res; |
|
6022 } |
|
6023 |
|
6024 |
|
6025 /* End: bn_mp_reduce_2k.c */ |
|
6026 |
|
6027 /* Start: bn_mp_reduce_2k_setup.c */ |
|
6028 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
6029 * |
|
6030 * LibTomMath is a library that provides multiple-precision |
|
6031 * integer arithmetic as well as number theoretic functionality. |
|
6032 * |
|
6033 * The library was designed directly after the MPI library by |
|
6034 * Michael Fromberger but has been written from scratch with |
|
6035 * additional optimizations in place. |
|
6036 * |
|
6037 * The library is free for all purposes without any express |
|
6038 * guarantee it works. |
|
6039 * |
|
6040 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
6041 */ |
15
|
6042 #include <ltc_tommath.h> |
3
|
6043 |
|
6044 /* determines the setup value */ |
|
6045 int |
|
6046 mp_reduce_2k_setup(mp_int *a, mp_digit *d) |
|
6047 { |
|
6048 int res, p; |
|
6049 mp_int tmp; |
|
6050 |
|
6051 if ((res = mp_init(&tmp)) != MP_OKAY) { |
|
6052 return res; |
|
6053 } |
|
6054 |
|
6055 p = mp_count_bits(a); |
|
6056 if ((res = mp_2expt(&tmp, p)) != MP_OKAY) { |
|
6057 mp_clear(&tmp); |
|
6058 return res; |
|
6059 } |
|
6060 |
|
6061 if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) { |
|
6062 mp_clear(&tmp); |
|
6063 return res; |
|
6064 } |
|
6065 |
|
6066 *d = tmp.dp[0]; |
|
6067 mp_clear(&tmp); |
|
6068 return MP_OKAY; |
|
6069 } |
|
6070 |
|
6071 /* End: bn_mp_reduce_2k_setup.c */ |
|
6072 |
|
6073 /* Start: bn_mp_reduce_is_2k.c */ |
|
6074 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
6075 * |
|
6076 * LibTomMath is a library that provides multiple-precision |
|
6077 * integer arithmetic as well as number theoretic functionality. |
|
6078 * |
|
6079 * The library was designed directly after the MPI library by |
|
6080 * Michael Fromberger but has been written from scratch with |
|
6081 * additional optimizations in place. |
|
6082 * |
|
6083 * The library is free for all purposes without any express |
|
6084 * guarantee it works. |
|
6085 * |
|
6086 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
6087 */ |
15
|
6088 #include <ltc_tommath.h> |
3
|
6089 |
|
6090 /* determines if mp_reduce_2k can be used */ |
|
6091 int mp_reduce_is_2k(mp_int *a) |
|
6092 { |
|
6093 int ix, iy, iz, iw; |
|
6094 |
|
6095 if (a->used == 0) { |
|
6096 return 0; |
|
6097 } else if (a->used == 1) { |
|
6098 return 1; |
|
6099 } else if (a->used > 1) { |
|
6100 iy = mp_count_bits(a); |
|
6101 iz = 1; |
|
6102 iw = 1; |
|
6103 |
|
6104 /* Test every bit from the second digit up, must be 1 */ |
|
6105 for (ix = DIGIT_BIT; ix < iy; ix++) { |
|
6106 if ((a->dp[iw] & iz) == 0) { |
|
6107 return 0; |
|
6108 } |
|
6109 iz <<= 1; |
|
6110 if (iz > (int)MP_MASK) { |
|
6111 ++iw; |
|
6112 iz = 1; |
|
6113 } |
|
6114 } |
|
6115 } |
|
6116 return 1; |
|
6117 } |
|
6118 |
|
6119 |
|
6120 /* End: bn_mp_reduce_is_2k.c */ |
|
6121 |
|
6122 /* Start: bn_mp_reduce_setup.c */ |
|
6123 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
6124 * |
|
6125 * LibTomMath is a library that provides multiple-precision |
|
6126 * integer arithmetic as well as number theoretic functionality. |
|
6127 * |
|
6128 * The library was designed directly after the MPI library by |
|
6129 * Michael Fromberger but has been written from scratch with |
|
6130 * additional optimizations in place. |
|
6131 * |
|
6132 * The library is free for all purposes without any express |
|
6133 * guarantee it works. |
|
6134 * |
|
6135 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
6136 */ |
15
|
6137 #include <ltc_tommath.h> |
3
|
6138 |
|
6139 /* pre-calculate the value required for Barrett reduction |
|
6140 * For a given modulus "b" it calulates the value required in "a" |
|
6141 */ |
|
6142 int |
|
6143 mp_reduce_setup (mp_int * a, mp_int * b) |
|
6144 { |
|
6145 int res; |
|
6146 |
|
6147 if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) { |
|
6148 return res; |
|
6149 } |
|
6150 return mp_div (a, b, a, NULL); |
|
6151 } |
|
6152 |
|
6153 /* End: bn_mp_reduce_setup.c */ |
|
6154 |
|
6155 /* Start: bn_mp_rshd.c */ |
|
6156 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
6157 * |
|
6158 * LibTomMath is a library that provides multiple-precision |
|
6159 * integer arithmetic as well as number theoretic functionality. |
|
6160 * |
|
6161 * The library was designed directly after the MPI library by |
|
6162 * Michael Fromberger but has been written from scratch with |
|
6163 * additional optimizations in place. |
|
6164 * |
|
6165 * The library is free for all purposes without any express |
|
6166 * guarantee it works. |
|
6167 * |
|
6168 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
6169 */ |
15
|
6170 #include <ltc_tommath.h> |
3
|
6171 |
|
6172 /* shift right a certain amount of digits */ |
|
6173 void mp_rshd (mp_int * a, int b) |
|
6174 { |
|
6175 int x; |
|
6176 |
|
6177 /* if b <= 0 then ignore it */ |
|
6178 if (b <= 0) { |
|
6179 return; |
|
6180 } |
|
6181 |
|
6182 /* if b > used then simply zero it and return */ |
|
6183 if (a->used <= b) { |
|
6184 mp_zero (a); |
|
6185 return; |
|
6186 } |
|
6187 |
|
6188 { |
|
6189 register mp_digit *bottom, *top; |
|
6190 |
|
6191 /* shift the digits down */ |
|
6192 |
|
6193 /* bottom */ |
|
6194 bottom = a->dp; |
|
6195 |
|
6196 /* top [offset into digits] */ |
|
6197 top = a->dp + b; |
|
6198 |
|
6199 /* this is implemented as a sliding window where |
|
6200 * the window is b-digits long and digits from |
|
6201 * the top of the window are copied to the bottom |
|
6202 * |
|
6203 * e.g. |
|
6204 |
|
6205 b-2 | b-1 | b0 | b1 | b2 | ... | bb | ----> |
|
6206 /\ | ----> |
|
6207 \-------------------/ ----> |
|
6208 */ |
|
6209 for (x = 0; x < (a->used - b); x++) { |
|
6210 *bottom++ = *top++; |
|
6211 } |
|
6212 |
|
6213 /* zero the top digits */ |
|
6214 for (; x < a->used; x++) { |
|
6215 *bottom++ = 0; |
|
6216 } |
|
6217 } |
|
6218 |
|
6219 /* remove excess digits */ |
|
6220 a->used -= b; |
|
6221 } |
|
6222 |
|
6223 /* End: bn_mp_rshd.c */ |
|
6224 |
|
6225 /* Start: bn_mp_set.c */ |
|
6226 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
6227 * |
|
6228 * LibTomMath is a library that provides multiple-precision |
|
6229 * integer arithmetic as well as number theoretic functionality. |
|
6230 * |
|
6231 * The library was designed directly after the MPI library by |
|
6232 * Michael Fromberger but has been written from scratch with |
|
6233 * additional optimizations in place. |
|
6234 * |
|
6235 * The library is free for all purposes without any express |
|
6236 * guarantee it works. |
|
6237 * |
|
6238 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
6239 */ |
15
|
6240 #include <ltc_tommath.h> |
3
|
6241 |
|
6242 /* set to a digit */ |
|
6243 void mp_set (mp_int * a, mp_digit b) |
|
6244 { |
|
6245 mp_zero (a); |
|
6246 a->dp[0] = b & MP_MASK; |
|
6247 a->used = (a->dp[0] != 0) ? 1 : 0; |
|
6248 } |
|
6249 |
|
6250 /* End: bn_mp_set.c */ |
|
6251 |
|
6252 /* Start: bn_mp_set_int.c */ |
|
6253 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
6254 * |
|
6255 * LibTomMath is a library that provides multiple-precision |
|
6256 * integer arithmetic as well as number theoretic functionality. |
|
6257 * |
|
6258 * The library was designed directly after the MPI library by |
|
6259 * Michael Fromberger but has been written from scratch with |
|
6260 * additional optimizations in place. |
|
6261 * |
|
6262 * The library is free for all purposes without any express |
|
6263 * guarantee it works. |
|
6264 * |
|
6265 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
6266 */ |
15
|
6267 #include <ltc_tommath.h> |
3
|
6268 |
|
6269 /* set a 32-bit const */ |
|
6270 int mp_set_int (mp_int * a, unsigned long b) |
|
6271 { |
|
6272 int x, res; |
|
6273 |
|
6274 mp_zero (a); |
|
6275 |
|
6276 /* set four bits at a time */ |
|
6277 for (x = 0; x < 8; x++) { |
|
6278 /* shift the number up four bits */ |
|
6279 if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) { |
|
6280 return res; |
|
6281 } |
|
6282 |
|
6283 /* OR in the top four bits of the source */ |
|
6284 a->dp[0] |= (b >> 28) & 15; |
|
6285 |
|
6286 /* shift the source up to the next four bits */ |
|
6287 b <<= 4; |
|
6288 |
|
6289 /* ensure that digits are not clamped off */ |
|
6290 a->used += 1; |
|
6291 } |
|
6292 mp_clamp (a); |
|
6293 return MP_OKAY; |
|
6294 } |
|
6295 |
|
6296 /* End: bn_mp_set_int.c */ |
|
6297 |
|
6298 /* Start: bn_mp_shrink.c */ |
|
6299 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
6300 * |
|
6301 * LibTomMath is a library that provides multiple-precision |
|
6302 * integer arithmetic as well as number theoretic functionality. |
|
6303 * |
|
6304 * The library was designed directly after the MPI library by |
|
6305 * Michael Fromberger but has been written from scratch with |
|
6306 * additional optimizations in place. |
|
6307 * |
|
6308 * The library is free for all purposes without any express |
|
6309 * guarantee it works. |
|
6310 * |
|
6311 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
6312 */ |
15
|
6313 #include <ltc_tommath.h> |
3
|
6314 |
|
6315 /* shrink a bignum */ |
|
6316 int mp_shrink (mp_int * a) |
|
6317 { |
|
6318 mp_digit *tmp; |
|
6319 if (a->alloc != a->used && a->used > 0) { |
|
6320 if ((tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * a->used)) == NULL) { |
|
6321 return MP_MEM; |
|
6322 } |
|
6323 a->dp = tmp; |
|
6324 a->alloc = a->used; |
|
6325 } |
|
6326 return MP_OKAY; |
|
6327 } |
|
6328 |
|
6329 /* End: bn_mp_shrink.c */ |
|
6330 |
|
6331 /* Start: bn_mp_signed_bin_size.c */ |
|
6332 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
6333 * |
|
6334 * LibTomMath is a library that provides multiple-precision |
|
6335 * integer arithmetic as well as number theoretic functionality. |
|
6336 * |
|
6337 * The library was designed directly after the MPI library by |
|
6338 * Michael Fromberger but has been written from scratch with |
|
6339 * additional optimizations in place. |
|
6340 * |
|
6341 * The library is free for all purposes without any express |
|
6342 * guarantee it works. |
|
6343 * |
|
6344 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
6345 */ |
15
|
6346 #include <ltc_tommath.h> |
3
|
6347 |
|
6348 /* get the size for an signed equivalent */ |
|
6349 int mp_signed_bin_size (mp_int * a) |
|
6350 { |
|
6351 return 1 + mp_unsigned_bin_size (a); |
|
6352 } |
|
6353 |
|
6354 /* End: bn_mp_signed_bin_size.c */ |
|
6355 |
|
6356 /* Start: bn_mp_sqr.c */ |
|
6357 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
6358 * |
|
6359 * LibTomMath is a library that provides multiple-precision |
|
6360 * integer arithmetic as well as number theoretic functionality. |
|
6361 * |
|
6362 * The library was designed directly after the MPI library by |
|
6363 * Michael Fromberger but has been written from scratch with |
|
6364 * additional optimizations in place. |
|
6365 * |
|
6366 * The library is free for all purposes without any express |
|
6367 * guarantee it works. |
|
6368 * |
|
6369 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
6370 */ |
15
|
6371 #include <ltc_tommath.h> |
3
|
6372 |
|
6373 /* computes b = a*a */ |
|
6374 int |
|
6375 mp_sqr (mp_int * a, mp_int * b) |
|
6376 { |
|
6377 int res; |
|
6378 |
|
6379 /* use Toom-Cook? */ |
|
6380 if (a->used >= TOOM_SQR_CUTOFF) { |
|
6381 res = mp_toom_sqr(a, b); |
|
6382 /* Karatsuba? */ |
|
6383 } else if (a->used >= KARATSUBA_SQR_CUTOFF) { |
|
6384 res = mp_karatsuba_sqr (a, b); |
|
6385 } else { |
|
6386 /* can we use the fast comba multiplier? */ |
|
6387 if ((a->used * 2 + 1) < MP_WARRAY && |
|
6388 a->used < |
|
6389 (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) { |
|
6390 res = fast_s_mp_sqr (a, b); |
|
6391 } else { |
|
6392 res = s_mp_sqr (a, b); |
|
6393 } |
|
6394 } |
|
6395 b->sign = MP_ZPOS; |
|
6396 return res; |
|
6397 } |
|
6398 |
|
6399 /* End: bn_mp_sqr.c */ |
|
6400 |
|
6401 /* Start: bn_mp_sqrmod.c */ |
|
6402 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
6403 * |
|
6404 * LibTomMath is a library that provides multiple-precision |
|
6405 * integer arithmetic as well as number theoretic functionality. |
|
6406 * |
|
6407 * The library was designed directly after the MPI library by |
|
6408 * Michael Fromberger but has been written from scratch with |
|
6409 * additional optimizations in place. |
|
6410 * |
|
6411 * The library is free for all purposes without any express |
|
6412 * guarantee it works. |
|
6413 * |
|
6414 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
6415 */ |
15
|
6416 #include <ltc_tommath.h> |
3
|
6417 |
|
6418 /* c = a * a (mod b) */ |
|
6419 int |
|
6420 mp_sqrmod (mp_int * a, mp_int * b, mp_int * c) |
|
6421 { |
|
6422 int res; |
|
6423 mp_int t; |
|
6424 |
|
6425 if ((res = mp_init (&t)) != MP_OKAY) { |
|
6426 return res; |
|
6427 } |
|
6428 |
|
6429 if ((res = mp_sqr (a, &t)) != MP_OKAY) { |
|
6430 mp_clear (&t); |
|
6431 return res; |
|
6432 } |
|
6433 res = mp_mod (&t, b, c); |
|
6434 mp_clear (&t); |
|
6435 return res; |
|
6436 } |
|
6437 |
|
6438 /* End: bn_mp_sqrmod.c */ |
|
6439 |
|
6440 /* Start: bn_mp_sqrt.c */ |
|
6441 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
6442 * |
|
6443 * LibTomMath is a library that provides multiple-precision |
|
6444 * integer arithmetic as well as number theoretic functionality. |
|
6445 * |
|
6446 * The library was designed directly after the MPI library by |
|
6447 * Michael Fromberger but has been written from scratch with |
|
6448 * additional optimizations in place. |
|
6449 * |
|
6450 * The library is free for all purposes without any express |
|
6451 * guarantee it works. |
|
6452 * |
|
6453 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
6454 */ |
15
|
6455 #include <ltc_tommath.h> |
3
|
6456 |
|
6457 /* this function is less generic than mp_n_root, simpler and faster */ |
|
6458 int mp_sqrt(mp_int *arg, mp_int *ret) |
|
6459 { |
|
6460 int res; |
|
6461 mp_int t1,t2; |
|
6462 |
|
6463 /* must be positive */ |
|
6464 if (arg->sign == MP_NEG) { |
|
6465 return MP_VAL; |
|
6466 } |
|
6467 |
|
6468 /* easy out */ |
|
6469 if (mp_iszero(arg) == MP_YES) { |
|
6470 mp_zero(ret); |
|
6471 return MP_OKAY; |
|
6472 } |
|
6473 |
|
6474 if ((res = mp_init_copy(&t1, arg)) != MP_OKAY) { |
|
6475 return res; |
|
6476 } |
|
6477 |
|
6478 if ((res = mp_init(&t2)) != MP_OKAY) { |
|
6479 goto E2; |
|
6480 } |
|
6481 |
|
6482 /* First approx. (not very bad for large arg) */ |
|
6483 mp_rshd (&t1,t1.used/2); |
|
6484 |
|
6485 /* t1 > 0 */ |
|
6486 if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) { |
|
6487 goto E1; |
|
6488 } |
|
6489 if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) { |
|
6490 goto E1; |
|
6491 } |
|
6492 if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) { |
|
6493 goto E1; |
|
6494 } |
|
6495 /* And now t1 > sqrt(arg) */ |
|
6496 do { |
|
6497 if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) { |
|
6498 goto E1; |
|
6499 } |
|
6500 if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) { |
|
6501 goto E1; |
|
6502 } |
|
6503 if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) { |
|
6504 goto E1; |
|
6505 } |
|
6506 /* t1 >= sqrt(arg) >= t2 at this point */ |
|
6507 } while (mp_cmp_mag(&t1,&t2) == MP_GT); |
|
6508 |
|
6509 mp_exch(&t1,ret); |
|
6510 |
|
6511 E1: mp_clear(&t2); |
|
6512 E2: mp_clear(&t1); |
|
6513 return res; |
|
6514 } |
|
6515 |
|
6516 |
|
6517 /* End: bn_mp_sqrt.c */ |
|
6518 |
|
6519 /* Start: bn_mp_sub.c */ |
|
6520 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
6521 * |
|
6522 * LibTomMath is a library that provides multiple-precision |
|
6523 * integer arithmetic as well as number theoretic functionality. |
|
6524 * |
|
6525 * The library was designed directly after the MPI library by |
|
6526 * Michael Fromberger but has been written from scratch with |
|
6527 * additional optimizations in place. |
|
6528 * |
|
6529 * The library is free for all purposes without any express |
|
6530 * guarantee it works. |
|
6531 * |
|
6532 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
6533 */ |
15
|
6534 #include <ltc_tommath.h> |
3
|
6535 |
|
6536 /* high level subtraction (handles signs) */ |
|
6537 int |
|
6538 mp_sub (mp_int * a, mp_int * b, mp_int * c) |
|
6539 { |
|
6540 int sa, sb, res; |
|
6541 |
|
6542 sa = a->sign; |
|
6543 sb = b->sign; |
|
6544 |
|
6545 if (sa != sb) { |
|
6546 /* subtract a negative from a positive, OR */ |
|
6547 /* subtract a positive from a negative. */ |
|
6548 /* In either case, ADD their magnitudes, */ |
|
6549 /* and use the sign of the first number. */ |
|
6550 c->sign = sa; |
|
6551 res = s_mp_add (a, b, c); |
|
6552 } else { |
|
6553 /* subtract a positive from a positive, OR */ |
|
6554 /* subtract a negative from a negative. */ |
|
6555 /* First, take the difference between their */ |
|
6556 /* magnitudes, then... */ |
|
6557 if (mp_cmp_mag (a, b) != MP_LT) { |
|
6558 /* Copy the sign from the first */ |
|
6559 c->sign = sa; |
|
6560 /* The first has a larger or equal magnitude */ |
|
6561 res = s_mp_sub (a, b, c); |
|
6562 } else { |
|
6563 /* The result has the *opposite* sign from */ |
|
6564 /* the first number. */ |
|
6565 c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS; |
|
6566 /* The second has a larger magnitude */ |
|
6567 res = s_mp_sub (b, a, c); |
|
6568 } |
|
6569 } |
|
6570 return res; |
|
6571 } |
|
6572 |
|
6573 |
|
6574 /* End: bn_mp_sub.c */ |
|
6575 |
|
6576 /* Start: bn_mp_sub_d.c */ |
|
6577 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
6578 * |
|
6579 * LibTomMath is a library that provides multiple-precision |
|
6580 * integer arithmetic as well as number theoretic functionality. |
|
6581 * |
|
6582 * The library was designed directly after the MPI library by |
|
6583 * Michael Fromberger but has been written from scratch with |
|
6584 * additional optimizations in place. |
|
6585 * |
|
6586 * The library is free for all purposes without any express |
|
6587 * guarantee it works. |
|
6588 * |
|
6589 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
6590 */ |
15
|
6591 #include <ltc_tommath.h> |
3
|
6592 |
|
6593 /* single digit subtraction */ |
|
6594 int |
|
6595 mp_sub_d (mp_int * a, mp_digit b, mp_int * c) |
|
6596 { |
|
6597 mp_digit *tmpa, *tmpc, mu; |
|
6598 int res, ix, oldused; |
|
6599 |
|
6600 /* grow c as required */ |
|
6601 if (c->alloc < a->used + 1) { |
|
6602 if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { |
|
6603 return res; |
|
6604 } |
|
6605 } |
|
6606 |
|
6607 /* if a is negative just do an unsigned |
|
6608 * addition [with fudged signs] |
|
6609 */ |
|
6610 if (a->sign == MP_NEG) { |
|
6611 a->sign = MP_ZPOS; |
|
6612 res = mp_add_d(a, b, c); |
|
6613 a->sign = c->sign = MP_NEG; |
|
6614 return res; |
|
6615 } |
|
6616 |
|
6617 /* setup regs */ |
|
6618 oldused = c->used; |
|
6619 tmpa = a->dp; |
|
6620 tmpc = c->dp; |
|
6621 |
|
6622 /* if a <= b simply fix the single digit */ |
|
6623 if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) { |
|
6624 if (a->used == 1) { |
|
6625 *tmpc++ = b - *tmpa; |
|
6626 } else { |
|
6627 *tmpc++ = b; |
|
6628 } |
|
6629 ix = 1; |
|
6630 |
|
6631 /* negative/1digit */ |
|
6632 c->sign = MP_NEG; |
|
6633 c->used = 1; |
|
6634 } else { |
|
6635 /* positive/size */ |
|
6636 c->sign = MP_ZPOS; |
|
6637 c->used = a->used; |
|
6638 |
|
6639 /* subtract first digit */ |
|
6640 *tmpc = *tmpa++ - b; |
|
6641 mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1); |
|
6642 *tmpc++ &= MP_MASK; |
|
6643 |
|
6644 /* handle rest of the digits */ |
|
6645 for (ix = 1; ix < a->used; ix++) { |
|
6646 *tmpc = *tmpa++ - mu; |
|
6647 mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1); |
|
6648 *tmpc++ &= MP_MASK; |
|
6649 } |
|
6650 } |
|
6651 |
|
6652 /* zero excess digits */ |
|
6653 while (ix++ < oldused) { |
|
6654 *tmpc++ = 0; |
|
6655 } |
|
6656 mp_clamp(c); |
|
6657 return MP_OKAY; |
|
6658 } |
|
6659 |
|
6660 |
|
6661 /* End: bn_mp_sub_d.c */ |
|
6662 |
|
6663 /* Start: bn_mp_submod.c */ |
|
6664 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
6665 * |
|
6666 * LibTomMath is a library that provides multiple-precision |
|
6667 * integer arithmetic as well as number theoretic functionality. |
|
6668 * |
|
6669 * The library was designed directly after the MPI library by |
|
6670 * Michael Fromberger but has been written from scratch with |
|
6671 * additional optimizations in place. |
|
6672 * |
|
6673 * The library is free for all purposes without any express |
|
6674 * guarantee it works. |
|
6675 * |
|
6676 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
6677 */ |
15
|
6678 #include <ltc_tommath.h> |
3
|
6679 |
|
6680 /* d = a - b (mod c) */ |
|
6681 int |
|
6682 mp_submod (mp_int * a, mp_int * b, mp_int * c, mp_int * d) |
|
6683 { |
|
6684 int res; |
|
6685 mp_int t; |
|
6686 |
|
6687 |
|
6688 if ((res = mp_init (&t)) != MP_OKAY) { |
|
6689 return res; |
|
6690 } |
|
6691 |
|
6692 if ((res = mp_sub (a, b, &t)) != MP_OKAY) { |
|
6693 mp_clear (&t); |
|
6694 return res; |
|
6695 } |
|
6696 res = mp_mod (&t, c, d); |
|
6697 mp_clear (&t); |
|
6698 return res; |
|
6699 } |
|
6700 |
|
6701 /* End: bn_mp_submod.c */ |
|
6702 |
|
6703 /* Start: bn_mp_to_signed_bin.c */ |
|
6704 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
6705 * |
|
6706 * LibTomMath is a library that provides multiple-precision |
|
6707 * integer arithmetic as well as number theoretic functionality. |
|
6708 * |
|
6709 * The library was designed directly after the MPI library by |
|
6710 * Michael Fromberger but has been written from scratch with |
|
6711 * additional optimizations in place. |
|
6712 * |
|
6713 * The library is free for all purposes without any express |
|
6714 * guarantee it works. |
|
6715 * |
|
6716 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
6717 */ |
15
|
6718 #include <ltc_tommath.h> |
3
|
6719 |
|
6720 /* store in signed [big endian] format */ |
|
6721 int |
|
6722 mp_to_signed_bin (mp_int * a, unsigned char *b) |
|
6723 { |
|
6724 int res; |
|
6725 |
|
6726 if ((res = mp_to_unsigned_bin (a, b + 1)) != MP_OKAY) { |
|
6727 return res; |
|
6728 } |
|
6729 b[0] = (unsigned char) ((a->sign == MP_ZPOS) ? 0 : 1); |
|
6730 return MP_OKAY; |
|
6731 } |
|
6732 |
|
6733 /* End: bn_mp_to_signed_bin.c */ |
|
6734 |
|
6735 /* Start: bn_mp_to_unsigned_bin.c */ |
|
6736 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
6737 * |
|
6738 * LibTomMath is a library that provides multiple-precision |
|
6739 * integer arithmetic as well as number theoretic functionality. |
|
6740 * |
|
6741 * The library was designed directly after the MPI library by |
|
6742 * Michael Fromberger but has been written from scratch with |
|
6743 * additional optimizations in place. |
|
6744 * |
|
6745 * The library is free for all purposes without any express |
|
6746 * guarantee it works. |
|
6747 * |
|
6748 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
6749 */ |
15
|
6750 #include <ltc_tommath.h> |
3
|
6751 |
|
6752 /* store in unsigned [big endian] format */ |
|
6753 int |
|
6754 mp_to_unsigned_bin (mp_int * a, unsigned char *b) |
|
6755 { |
|
6756 int x, res; |
|
6757 mp_int t; |
|
6758 |
|
6759 if ((res = mp_init_copy (&t, a)) != MP_OKAY) { |
|
6760 return res; |
|
6761 } |
|
6762 |
|
6763 x = 0; |
|
6764 while (mp_iszero (&t) == 0) { |
|
6765 #ifndef MP_8BIT |
|
6766 b[x++] = (unsigned char) (t.dp[0] & 255); |
|
6767 #else |
|
6768 b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7)); |
|
6769 #endif |
|
6770 if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) { |
|
6771 mp_clear (&t); |
|
6772 return res; |
|
6773 } |
|
6774 } |
|
6775 bn_reverse (b, x); |
|
6776 mp_clear (&t); |
|
6777 return MP_OKAY; |
|
6778 } |
|
6779 |
|
6780 /* End: bn_mp_to_unsigned_bin.c */ |
|
6781 |
|
6782 /* Start: bn_mp_toom_mul.c */ |
|
6783 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
6784 * |
|
6785 * LibTomMath is a library that provides multiple-precision |
|
6786 * integer arithmetic as well as number theoretic functionality. |
|
6787 * |
|
6788 * The library was designed directly after the MPI library by |
|
6789 * Michael Fromberger but has been written from scratch with |
|
6790 * additional optimizations in place. |
|
6791 * |
|
6792 * The library is free for all purposes without any express |
|
6793 * guarantee it works. |
|
6794 * |
|
6795 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
6796 */ |
15
|
6797 #include <ltc_tommath.h> |
3
|
6798 |
|
6799 /* multiplication using the Toom-Cook 3-way algorithm */ |
|
6800 int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c) |
|
6801 { |
|
6802 mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2; |
|
6803 int res, B; |
|
6804 |
|
6805 /* init temps */ |
|
6806 if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, |
|
6807 &a0, &a1, &a2, &b0, &b1, |
|
6808 &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) { |
|
6809 return res; |
|
6810 } |
|
6811 |
|
6812 /* B */ |
|
6813 B = MIN(a->used, b->used) / 3; |
|
6814 |
|
6815 /* a = a2 * B**2 + a1 * B + a0 */ |
|
6816 if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) { |
|
6817 goto ERR; |
|
6818 } |
|
6819 |
|
6820 if ((res = mp_copy(a, &a1)) != MP_OKAY) { |
|
6821 goto ERR; |
|
6822 } |
|
6823 mp_rshd(&a1, B); |
|
6824 mp_mod_2d(&a1, DIGIT_BIT * B, &a1); |
|
6825 |
|
6826 if ((res = mp_copy(a, &a2)) != MP_OKAY) { |
|
6827 goto ERR; |
|
6828 } |
|
6829 mp_rshd(&a2, B*2); |
|
6830 |
|
6831 /* b = b2 * B**2 + b1 * B + b0 */ |
|
6832 if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) { |
|
6833 goto ERR; |
|
6834 } |
|
6835 |
|
6836 if ((res = mp_copy(b, &b1)) != MP_OKAY) { |
|
6837 goto ERR; |
|
6838 } |
|
6839 mp_rshd(&b1, B); |
|
6840 mp_mod_2d(&b1, DIGIT_BIT * B, &b1); |
|
6841 |
|
6842 if ((res = mp_copy(b, &b2)) != MP_OKAY) { |
|
6843 goto ERR; |
|
6844 } |
|
6845 mp_rshd(&b2, B*2); |
|
6846 |
|
6847 /* w0 = a0*b0 */ |
|
6848 if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) { |
|
6849 goto ERR; |
|
6850 } |
|
6851 |
|
6852 /* w4 = a2 * b2 */ |
|
6853 if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) { |
|
6854 goto ERR; |
|
6855 } |
|
6856 |
|
6857 /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */ |
|
6858 if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) { |
|
6859 goto ERR; |
|
6860 } |
|
6861 if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { |
|
6862 goto ERR; |
|
6863 } |
|
6864 if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { |
|
6865 goto ERR; |
|
6866 } |
|
6867 if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) { |
|
6868 goto ERR; |
|
6869 } |
|
6870 |
|
6871 if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) { |
|
6872 goto ERR; |
|
6873 } |
|
6874 if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) { |
|
6875 goto ERR; |
|
6876 } |
|
6877 if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) { |
|
6878 goto ERR; |
|
6879 } |
|
6880 if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) { |
|
6881 goto ERR; |
|
6882 } |
|
6883 |
|
6884 if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) { |
|
6885 goto ERR; |
|
6886 } |
|
6887 |
|
6888 /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */ |
|
6889 if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) { |
|
6890 goto ERR; |
|
6891 } |
|
6892 if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { |
|
6893 goto ERR; |
|
6894 } |
|
6895 if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { |
|
6896 goto ERR; |
|
6897 } |
|
6898 if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { |
|
6899 goto ERR; |
|
6900 } |
|
6901 |
|
6902 if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) { |
|
6903 goto ERR; |
|
6904 } |
|
6905 if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) { |
|
6906 goto ERR; |
|
6907 } |
|
6908 if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) { |
|
6909 goto ERR; |
|
6910 } |
|
6911 if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) { |
|
6912 goto ERR; |
|
6913 } |
|
6914 |
|
6915 if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) { |
|
6916 goto ERR; |
|
6917 } |
|
6918 |
|
6919 |
|
6920 /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */ |
|
6921 if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) { |
|
6922 goto ERR; |
|
6923 } |
|
6924 if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { |
|
6925 goto ERR; |
|
6926 } |
|
6927 if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) { |
|
6928 goto ERR; |
|
6929 } |
|
6930 if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) { |
|
6931 goto ERR; |
|
6932 } |
|
6933 if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) { |
|
6934 goto ERR; |
|
6935 } |
|
6936 |
|
6937 /* now solve the matrix |
|
6938 |
|
6939 0 0 0 0 1 |
|
6940 1 2 4 8 16 |
|
6941 1 1 1 1 1 |
|
6942 16 8 4 2 1 |
|
6943 1 0 0 0 0 |
|
6944 |
|
6945 using 12 subtractions, 4 shifts, |
|
6946 2 small divisions and 1 small multiplication |
|
6947 */ |
|
6948 |
|
6949 /* r1 - r4 */ |
|
6950 if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) { |
|
6951 goto ERR; |
|
6952 } |
|
6953 /* r3 - r0 */ |
|
6954 if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) { |
|
6955 goto ERR; |
|
6956 } |
|
6957 /* r1/2 */ |
|
6958 if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) { |
|
6959 goto ERR; |
|
6960 } |
|
6961 /* r3/2 */ |
|
6962 if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) { |
|
6963 goto ERR; |
|
6964 } |
|
6965 /* r2 - r0 - r4 */ |
|
6966 if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) { |
|
6967 goto ERR; |
|
6968 } |
|
6969 if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) { |
|
6970 goto ERR; |
|
6971 } |
|
6972 /* r1 - r2 */ |
|
6973 if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { |
|
6974 goto ERR; |
|
6975 } |
|
6976 /* r3 - r2 */ |
|
6977 if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { |
|
6978 goto ERR; |
|
6979 } |
|
6980 /* r1 - 8r0 */ |
|
6981 if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) { |
|
6982 goto ERR; |
|
6983 } |
|
6984 if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) { |
|
6985 goto ERR; |
|
6986 } |
|
6987 /* r3 - 8r4 */ |
|
6988 if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) { |
|
6989 goto ERR; |
|
6990 } |
|
6991 if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) { |
|
6992 goto ERR; |
|
6993 } |
|
6994 /* 3r2 - r1 - r3 */ |
|
6995 if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) { |
|
6996 goto ERR; |
|
6997 } |
|
6998 if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) { |
|
6999 goto ERR; |
|
7000 } |
|
7001 if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) { |
|
7002 goto ERR; |
|
7003 } |
|
7004 /* r1 - r2 */ |
|
7005 if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { |
|
7006 goto ERR; |
|
7007 } |
|
7008 /* r3 - r2 */ |
|
7009 if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { |
|
7010 goto ERR; |
|
7011 } |
|
7012 /* r1/3 */ |
|
7013 if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) { |
|
7014 goto ERR; |
|
7015 } |
|
7016 /* r3/3 */ |
|
7017 if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) { |
|
7018 goto ERR; |
|
7019 } |
|
7020 |
|
7021 /* at this point shift W[n] by B*n */ |
|
7022 if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) { |
|
7023 goto ERR; |
|
7024 } |
|
7025 if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) { |
|
7026 goto ERR; |
|
7027 } |
|
7028 if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) { |
|
7029 goto ERR; |
|
7030 } |
|
7031 if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) { |
|
7032 goto ERR; |
|
7033 } |
|
7034 |
|
7035 if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) { |
|
7036 goto ERR; |
|
7037 } |
|
7038 if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) { |
|
7039 goto ERR; |
|
7040 } |
|
7041 if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) { |
|
7042 goto ERR; |
|
7043 } |
|
7044 if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) { |
|
7045 goto ERR; |
|
7046 } |
|
7047 |
|
7048 ERR: |
|
7049 mp_clear_multi(&w0, &w1, &w2, &w3, &w4, |
|
7050 &a0, &a1, &a2, &b0, &b1, |
|
7051 &b2, &tmp1, &tmp2, NULL); |
|
7052 return res; |
|
7053 } |
|
7054 |
|
7055 |
|
7056 /* End: bn_mp_toom_mul.c */ |
|
7057 |
|
7058 /* Start: bn_mp_toom_sqr.c */ |
|
7059 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
7060 * |
|
7061 * LibTomMath is a library that provides multiple-precision |
|
7062 * integer arithmetic as well as number theoretic functionality. |
|
7063 * |
|
7064 * The library was designed directly after the MPI library by |
|
7065 * Michael Fromberger but has been written from scratch with |
|
7066 * additional optimizations in place. |
|
7067 * |
|
7068 * The library is free for all purposes without any express |
|
7069 * guarantee it works. |
|
7070 * |
|
7071 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
7072 */ |
15
|
7073 #include <ltc_tommath.h> |
3
|
7074 |
|
7075 /* squaring using Toom-Cook 3-way algorithm */ |
|
7076 int |
|
7077 mp_toom_sqr(mp_int *a, mp_int *b) |
|
7078 { |
|
7079 mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2; |
|
7080 int res, B; |
|
7081 |
|
7082 /* init temps */ |
|
7083 if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL)) != MP_OKAY) { |
|
7084 return res; |
|
7085 } |
|
7086 |
|
7087 /* B */ |
|
7088 B = a->used / 3; |
|
7089 |
|
7090 /* a = a2 * B**2 + a1 * B + a0 */ |
|
7091 if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) { |
|
7092 goto ERR; |
|
7093 } |
|
7094 |
|
7095 if ((res = mp_copy(a, &a1)) != MP_OKAY) { |
|
7096 goto ERR; |
|
7097 } |
|
7098 mp_rshd(&a1, B); |
|
7099 mp_mod_2d(&a1, DIGIT_BIT * B, &a1); |
|
7100 |
|
7101 if ((res = mp_copy(a, &a2)) != MP_OKAY) { |
|
7102 goto ERR; |
|
7103 } |
|
7104 mp_rshd(&a2, B*2); |
|
7105 |
|
7106 /* w0 = a0*a0 */ |
|
7107 if ((res = mp_sqr(&a0, &w0)) != MP_OKAY) { |
|
7108 goto ERR; |
|
7109 } |
|
7110 |
|
7111 /* w4 = a2 * a2 */ |
|
7112 if ((res = mp_sqr(&a2, &w4)) != MP_OKAY) { |
|
7113 goto ERR; |
|
7114 } |
|
7115 |
|
7116 /* w1 = (a2 + 2(a1 + 2a0))**2 */ |
|
7117 if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) { |
|
7118 goto ERR; |
|
7119 } |
|
7120 if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { |
|
7121 goto ERR; |
|
7122 } |
|
7123 if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { |
|
7124 goto ERR; |
|
7125 } |
|
7126 if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) { |
|
7127 goto ERR; |
|
7128 } |
|
7129 |
|
7130 if ((res = mp_sqr(&tmp1, &w1)) != MP_OKAY) { |
|
7131 goto ERR; |
|
7132 } |
|
7133 |
|
7134 /* w3 = (a0 + 2(a1 + 2a2))**2 */ |
|
7135 if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) { |
|
7136 goto ERR; |
|
7137 } |
|
7138 if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { |
|
7139 goto ERR; |
|
7140 } |
|
7141 if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { |
|
7142 goto ERR; |
|
7143 } |
|
7144 if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { |
|
7145 goto ERR; |
|
7146 } |
|
7147 |
|
7148 if ((res = mp_sqr(&tmp1, &w3)) != MP_OKAY) { |
|
7149 goto ERR; |
|
7150 } |
|
7151 |
|
7152 |
|
7153 /* w2 = (a2 + a1 + a0)**2 */ |
|
7154 if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) { |
|
7155 goto ERR; |
|
7156 } |
|
7157 if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { |
|
7158 goto ERR; |
|
7159 } |
|
7160 if ((res = mp_sqr(&tmp1, &w2)) != MP_OKAY) { |
|
7161 goto ERR; |
|
7162 } |
|
7163 |
|
7164 /* now solve the matrix |
|
7165 |
|
7166 0 0 0 0 1 |
|
7167 1 2 4 8 16 |
|
7168 1 1 1 1 1 |
|
7169 16 8 4 2 1 |
|
7170 1 0 0 0 0 |
|
7171 |
|
7172 using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication. |
|
7173 */ |
|
7174 |
|
7175 /* r1 - r4 */ |
|
7176 if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) { |
|
7177 goto ERR; |
|
7178 } |
|
7179 /* r3 - r0 */ |
|
7180 if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) { |
|
7181 goto ERR; |
|
7182 } |
|
7183 /* r1/2 */ |
|
7184 if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) { |
|
7185 goto ERR; |
|
7186 } |
|
7187 /* r3/2 */ |
|
7188 if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) { |
|
7189 goto ERR; |
|
7190 } |
|
7191 /* r2 - r0 - r4 */ |
|
7192 if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) { |
|
7193 goto ERR; |
|
7194 } |
|
7195 if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) { |
|
7196 goto ERR; |
|
7197 } |
|
7198 /* r1 - r2 */ |
|
7199 if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { |
|
7200 goto ERR; |
|
7201 } |
|
7202 /* r3 - r2 */ |
|
7203 if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { |
|
7204 goto ERR; |
|
7205 } |
|
7206 /* r1 - 8r0 */ |
|
7207 if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) { |
|
7208 goto ERR; |
|
7209 } |
|
7210 if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) { |
|
7211 goto ERR; |
|
7212 } |
|
7213 /* r3 - 8r4 */ |
|
7214 if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) { |
|
7215 goto ERR; |
|
7216 } |
|
7217 if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) { |
|
7218 goto ERR; |
|
7219 } |
|
7220 /* 3r2 - r1 - r3 */ |
|
7221 if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) { |
|
7222 goto ERR; |
|
7223 } |
|
7224 if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) { |
|
7225 goto ERR; |
|
7226 } |
|
7227 if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) { |
|
7228 goto ERR; |
|
7229 } |
|
7230 /* r1 - r2 */ |
|
7231 if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { |
|
7232 goto ERR; |
|
7233 } |
|
7234 /* r3 - r2 */ |
|
7235 if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { |
|
7236 goto ERR; |
|
7237 } |
|
7238 /* r1/3 */ |
|
7239 if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) { |
|
7240 goto ERR; |
|
7241 } |
|
7242 /* r3/3 */ |
|
7243 if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) { |
|
7244 goto ERR; |
|
7245 } |
|
7246 |
|
7247 /* at this point shift W[n] by B*n */ |
|
7248 if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) { |
|
7249 goto ERR; |
|
7250 } |
|
7251 if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) { |
|
7252 goto ERR; |
|
7253 } |
|
7254 if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) { |
|
7255 goto ERR; |
|
7256 } |
|
7257 if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) { |
|
7258 goto ERR; |
|
7259 } |
|
7260 |
|
7261 if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) { |
|
7262 goto ERR; |
|
7263 } |
|
7264 if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) { |
|
7265 goto ERR; |
|
7266 } |
|
7267 if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) { |
|
7268 goto ERR; |
|
7269 } |
|
7270 if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) { |
|
7271 goto ERR; |
|
7272 } |
|
7273 |
|
7274 ERR: |
|
7275 mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL); |
|
7276 return res; |
|
7277 } |
|
7278 |
|
7279 |
|
7280 /* End: bn_mp_toom_sqr.c */ |
|
7281 |
|
7282 /* Start: bn_mp_toradix.c */ |
|
7283 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
7284 * |
|
7285 * LibTomMath is a library that provides multiple-precision |
|
7286 * integer arithmetic as well as number theoretic functionality. |
|
7287 * |
|
7288 * The library was designed directly after the MPI library by |
|
7289 * Michael Fromberger but has been written from scratch with |
|
7290 * additional optimizations in place. |
|
7291 * |
|
7292 * The library is free for all purposes without any express |
|
7293 * guarantee it works. |
|
7294 * |
|
7295 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
7296 */ |
15
|
7297 #include <ltc_tommath.h> |
3
|
7298 |
|
7299 /* stores a bignum as a ASCII string in a given radix (2..64) */ |
|
7300 int mp_toradix (mp_int * a, char *str, int radix) |
|
7301 { |
|
7302 int res, digs; |
|
7303 mp_int t; |
|
7304 mp_digit d; |
|
7305 char *_s = str; |
|
7306 |
|
7307 /* check range of the radix */ |
|
7308 if (radix < 2 || radix > 64) { |
|
7309 return MP_VAL; |
|
7310 } |
|
7311 |
|
7312 /* quick out if its zero */ |
|
7313 if (mp_iszero(a) == 1) { |
|
7314 *str++ = '0'; |
|
7315 *str = '\0'; |
|
7316 return MP_OKAY; |
|
7317 } |
|
7318 |
|
7319 if ((res = mp_init_copy (&t, a)) != MP_OKAY) { |
|
7320 return res; |
|
7321 } |
|
7322 |
|
7323 /* if it is negative output a - */ |
|
7324 if (t.sign == MP_NEG) { |
|
7325 ++_s; |
|
7326 *str++ = '-'; |
|
7327 t.sign = MP_ZPOS; |
|
7328 } |
|
7329 |
|
7330 digs = 0; |
|
7331 while (mp_iszero (&t) == 0) { |
|
7332 if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) { |
|
7333 mp_clear (&t); |
|
7334 return res; |
|
7335 } |
|
7336 *str++ = mp_s_rmap[d]; |
|
7337 ++digs; |
|
7338 } |
|
7339 |
|
7340 /* reverse the digits of the string. In this case _s points |
|
7341 * to the first digit [exluding the sign] of the number] |
|
7342 */ |
|
7343 bn_reverse ((unsigned char *)_s, digs); |
|
7344 |
|
7345 /* append a NULL so the string is properly terminated */ |
|
7346 *str = '\0'; |
|
7347 |
|
7348 mp_clear (&t); |
|
7349 return MP_OKAY; |
|
7350 } |
|
7351 |
|
7352 |
|
7353 /* End: bn_mp_toradix.c */ |
|
7354 |
|
7355 /* Start: bn_mp_toradix_n.c */ |
|
7356 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
7357 * |
|
7358 * LibTomMath is a library that provides multiple-precision |
|
7359 * integer arithmetic as well as number theoretic functionality. |
|
7360 * |
|
7361 * The library was designed directly after the MPI library by |
|
7362 * Michael Fromberger but has been written from scratch with |
|
7363 * additional optimizations in place. |
|
7364 * |
|
7365 * The library is free for all purposes without any express |
|
7366 * guarantee it works. |
|
7367 * |
|
7368 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
7369 */ |
15
|
7370 #include <ltc_tommath.h> |
3
|
7371 |
|
7372 /* stores a bignum as a ASCII string in a given radix (2..64) |
|
7373 * |
|
7374 * Stores upto maxlen-1 chars and always a NULL byte |
|
7375 */ |
|
7376 int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen) |
|
7377 { |
|
7378 int res, digs; |
|
7379 mp_int t; |
|
7380 mp_digit d; |
|
7381 char *_s = str; |
|
7382 |
|
7383 /* check range of the maxlen, radix */ |
|
7384 if (maxlen < 3 || radix < 2 || radix > 64) { |
|
7385 return MP_VAL; |
|
7386 } |
|
7387 |
|
7388 /* quick out if its zero */ |
|
7389 if (mp_iszero(a) == 1) { |
|
7390 *str++ = '0'; |
|
7391 *str = '\0'; |
|
7392 return MP_OKAY; |
|
7393 } |
|
7394 |
|
7395 if ((res = mp_init_copy (&t, a)) != MP_OKAY) { |
|
7396 return res; |
|
7397 } |
|
7398 |
|
7399 /* if it is negative output a - */ |
|
7400 if (t.sign == MP_NEG) { |
|
7401 /* we have to reverse our digits later... but not the - sign!! */ |
|
7402 ++_s; |
|
7403 |
|
7404 /* store the flag and mark the number as positive */ |
|
7405 *str++ = '-'; |
|
7406 t.sign = MP_ZPOS; |
|
7407 |
|
7408 /* subtract a char */ |
|
7409 --maxlen; |
|
7410 } |
|
7411 |
|
7412 digs = 0; |
|
7413 while (mp_iszero (&t) == 0) { |
|
7414 if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) { |
|
7415 mp_clear (&t); |
|
7416 return res; |
|
7417 } |
|
7418 *str++ = mp_s_rmap[d]; |
|
7419 ++digs; |
|
7420 |
|
7421 if (--maxlen == 1) { |
|
7422 /* no more room */ |
|
7423 break; |
|
7424 } |
|
7425 } |
|
7426 |
|
7427 /* reverse the digits of the string. In this case _s points |
|
7428 * to the first digit [exluding the sign] of the number] |
|
7429 */ |
|
7430 bn_reverse ((unsigned char *)_s, digs); |
|
7431 |
|
7432 /* append a NULL so the string is properly terminated */ |
|
7433 *str = '\0'; |
|
7434 |
|
7435 mp_clear (&t); |
|
7436 return MP_OKAY; |
|
7437 } |
|
7438 |
|
7439 |
|
7440 /* End: bn_mp_toradix_n.c */ |
|
7441 |
|
7442 /* Start: bn_mp_unsigned_bin_size.c */ |
|
7443 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
7444 * |
|
7445 * LibTomMath is a library that provides multiple-precision |
|
7446 * integer arithmetic as well as number theoretic functionality. |
|
7447 * |
|
7448 * The library was designed directly after the MPI library by |
|
7449 * Michael Fromberger but has been written from scratch with |
|
7450 * additional optimizations in place. |
|
7451 * |
|
7452 * The library is free for all purposes without any express |
|
7453 * guarantee it works. |
|
7454 * |
|
7455 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
7456 */ |
15
|
7457 #include <ltc_tommath.h> |
3
|
7458 |
|
7459 /* get the size for an unsigned equivalent */ |
|
7460 int |
|
7461 mp_unsigned_bin_size (mp_int * a) |
|
7462 { |
|
7463 int size = mp_count_bits (a); |
|
7464 return (size / 8 + ((size & 7) != 0 ? 1 : 0)); |
|
7465 } |
|
7466 |
|
7467 /* End: bn_mp_unsigned_bin_size.c */ |
|
7468 |
|
7469 /* Start: bn_mp_xor.c */ |
|
7470 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
7471 * |
|
7472 * LibTomMath is a library that provides multiple-precision |
|
7473 * integer arithmetic as well as number theoretic functionality. |
|
7474 * |
|
7475 * The library was designed directly after the MPI library by |
|
7476 * Michael Fromberger but has been written from scratch with |
|
7477 * additional optimizations in place. |
|
7478 * |
|
7479 * The library is free for all purposes without any express |
|
7480 * guarantee it works. |
|
7481 * |
|
7482 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
7483 */ |
15
|
7484 #include <ltc_tommath.h> |
3
|
7485 |
|
7486 /* XOR two ints together */ |
|
7487 int |
|
7488 mp_xor (mp_int * a, mp_int * b, mp_int * c) |
|
7489 { |
|
7490 int res, ix, px; |
|
7491 mp_int t, *x; |
|
7492 |
|
7493 if (a->used > b->used) { |
|
7494 if ((res = mp_init_copy (&t, a)) != MP_OKAY) { |
|
7495 return res; |
|
7496 } |
|
7497 px = b->used; |
|
7498 x = b; |
|
7499 } else { |
|
7500 if ((res = mp_init_copy (&t, b)) != MP_OKAY) { |
|
7501 return res; |
|
7502 } |
|
7503 px = a->used; |
|
7504 x = a; |
|
7505 } |
|
7506 |
|
7507 for (ix = 0; ix < px; ix++) { |
|
7508 t.dp[ix] ^= x->dp[ix]; |
|
7509 } |
|
7510 mp_clamp (&t); |
|
7511 mp_exch (c, &t); |
|
7512 mp_clear (&t); |
|
7513 return MP_OKAY; |
|
7514 } |
|
7515 |
|
7516 /* End: bn_mp_xor.c */ |
|
7517 |
|
7518 /* Start: bn_mp_zero.c */ |
|
7519 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
7520 * |
|
7521 * LibTomMath is a library that provides multiple-precision |
|
7522 * integer arithmetic as well as number theoretic functionality. |
|
7523 * |
|
7524 * The library was designed directly after the MPI library by |
|
7525 * Michael Fromberger but has been written from scratch with |
|
7526 * additional optimizations in place. |
|
7527 * |
|
7528 * The library is free for all purposes without any express |
|
7529 * guarantee it works. |
|
7530 * |
|
7531 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
7532 */ |
15
|
7533 #include <ltc_tommath.h> |
3
|
7534 |
|
7535 /* set to zero */ |
|
7536 void |
|
7537 mp_zero (mp_int * a) |
|
7538 { |
|
7539 a->sign = MP_ZPOS; |
|
7540 a->used = 0; |
|
7541 memset (a->dp, 0, sizeof (mp_digit) * a->alloc); |
|
7542 } |
|
7543 |
|
7544 /* End: bn_mp_zero.c */ |
|
7545 |
|
7546 /* Start: bn_prime_sizes_tab.c */ |
|
7547 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
7548 * |
|
7549 * LibTomMath is a library that provides multiple-precision |
|
7550 * integer arithmetic as well as number theoretic functionality. |
|
7551 * |
|
7552 * The library was designed directly after the MPI library by |
|
7553 * Michael Fromberger but has been written from scratch with |
|
7554 * additional optimizations in place. |
|
7555 * |
|
7556 * The library is free for all purposes without any express |
|
7557 * guarantee it works. |
|
7558 * |
|
7559 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
7560 */ |
15
|
7561 #include <ltc_tommath.h> |
3
|
7562 |
|
7563 /* this table gives the # of rabin miller trials for a prob of failure lower than 2^-96 */ |
|
7564 static const struct { |
|
7565 int k, t; |
|
7566 } sizes[] = { |
|
7567 { 128, 28 }, |
|
7568 { 256, 16 }, |
|
7569 { 384, 10 }, |
|
7570 { 512, 7 }, |
|
7571 { 640, 6 }, |
|
7572 { 768, 5 }, |
|
7573 { 896, 4 }, |
|
7574 { 1024, 4 }, |
|
7575 { 1152, 3 }, |
|
7576 { 1280, 3 }, |
|
7577 { 1408, 3 }, |
|
7578 { 1536, 3 }, |
|
7579 { 1664, 3 }, |
|
7580 { 1792, 2 } }; |
|
7581 |
|
7582 /* returns # of RM trials required for a given bit size */ |
|
7583 int mp_prime_rabin_miller_trials(int size) |
|
7584 { |
|
7585 int x; |
|
7586 |
|
7587 for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) { |
|
7588 if (sizes[x].k == size) { |
|
7589 return sizes[x].t; |
|
7590 } else if (sizes[x].k > size) { |
|
7591 return (x == 0) ? sizes[0].t : sizes[x - 1].t; |
|
7592 } |
|
7593 } |
|
7594 return 1; |
|
7595 } |
|
7596 |
|
7597 |
|
7598 |
|
7599 /* End: bn_prime_sizes_tab.c */ |
|
7600 |
|
7601 /* Start: bn_prime_tab.c */ |
|
7602 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
7603 * |
|
7604 * LibTomMath is a library that provides multiple-precision |
|
7605 * integer arithmetic as well as number theoretic functionality. |
|
7606 * |
|
7607 * The library was designed directly after the MPI library by |
|
7608 * Michael Fromberger but has been written from scratch with |
|
7609 * additional optimizations in place. |
|
7610 * |
|
7611 * The library is free for all purposes without any express |
|
7612 * guarantee it works. |
|
7613 * |
|
7614 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
7615 */ |
15
|
7616 #include <ltc_tommath.h> |
3
|
7617 const mp_digit __prime_tab[] = { |
|
7618 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013, |
|
7619 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035, |
|
7620 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059, |
|
7621 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, |
|
7622 #ifndef MP_8BIT |
|
7623 0x0083, |
|
7624 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD, |
|
7625 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF, |
|
7626 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107, |
|
7627 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137, |
|
7628 |
|
7629 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167, |
|
7630 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199, |
|
7631 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9, |
|
7632 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7, |
|
7633 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239, |
|
7634 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265, |
|
7635 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293, |
|
7636 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF, |
|
7637 |
|
7638 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301, |
|
7639 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B, |
|
7640 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371, |
|
7641 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD, |
|
7642 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5, |
|
7643 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419, |
|
7644 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449, |
|
7645 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B, |
|
7646 |
|
7647 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7, |
|
7648 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503, |
|
7649 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529, |
|
7650 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F, |
|
7651 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3, |
|
7652 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7, |
|
7653 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623, |
|
7654 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653 |
|
7655 #endif |
|
7656 }; |
|
7657 |
|
7658 /* End: bn_prime_tab.c */ |
|
7659 |
|
7660 /* Start: bn_reverse.c */ |
|
7661 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
7662 * |
|
7663 * LibTomMath is a library that provides multiple-precision |
|
7664 * integer arithmetic as well as number theoretic functionality. |
|
7665 * |
|
7666 * The library was designed directly after the MPI library by |
|
7667 * Michael Fromberger but has been written from scratch with |
|
7668 * additional optimizations in place. |
|
7669 * |
|
7670 * The library is free for all purposes without any express |
|
7671 * guarantee it works. |
|
7672 * |
|
7673 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
7674 */ |
15
|
7675 #include <ltc_tommath.h> |
3
|
7676 |
|
7677 /* reverse an array, used for radix code */ |
|
7678 void |
|
7679 bn_reverse (unsigned char *s, int len) |
|
7680 { |
|
7681 int ix, iy; |
|
7682 unsigned char t; |
|
7683 |
|
7684 ix = 0; |
|
7685 iy = len - 1; |
|
7686 while (ix < iy) { |
|
7687 t = s[ix]; |
|
7688 s[ix] = s[iy]; |
|
7689 s[iy] = t; |
|
7690 ++ix; |
|
7691 --iy; |
|
7692 } |
|
7693 } |
|
7694 |
|
7695 /* End: bn_reverse.c */ |
|
7696 |
|
7697 /* Start: bn_s_mp_add.c */ |
|
7698 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
7699 * |
|
7700 * LibTomMath is a library that provides multiple-precision |
|
7701 * integer arithmetic as well as number theoretic functionality. |
|
7702 * |
|
7703 * The library was designed directly after the MPI library by |
|
7704 * Michael Fromberger but has been written from scratch with |
|
7705 * additional optimizations in place. |
|
7706 * |
|
7707 * The library is free for all purposes without any express |
|
7708 * guarantee it works. |
|
7709 * |
|
7710 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
7711 */ |
15
|
7712 #include <ltc_tommath.h> |
3
|
7713 |
|
7714 /* low level addition, based on HAC pp.594, Algorithm 14.7 */ |
|
7715 int |
|
7716 s_mp_add (mp_int * a, mp_int * b, mp_int * c) |
|
7717 { |
|
7718 mp_int *x; |
|
7719 int olduse, res, min, max; |
|
7720 |
|
7721 /* find sizes, we let |a| <= |b| which means we have to sort |
|
7722 * them. "x" will point to the input with the most digits |
|
7723 */ |
|
7724 if (a->used > b->used) { |
|
7725 min = b->used; |
|
7726 max = a->used; |
|
7727 x = a; |
|
7728 } else { |
|
7729 min = a->used; |
|
7730 max = b->used; |
|
7731 x = b; |
|
7732 } |
|
7733 |
|
7734 /* init result */ |
|
7735 if (c->alloc < max + 1) { |
|
7736 if ((res = mp_grow (c, max + 1)) != MP_OKAY) { |
|
7737 return res; |
|
7738 } |
|
7739 } |
|
7740 |
|
7741 /* get old used digit count and set new one */ |
|
7742 olduse = c->used; |
|
7743 c->used = max + 1; |
|
7744 |
|
7745 { |
|
7746 register mp_digit u, *tmpa, *tmpb, *tmpc; |
|
7747 register int i; |
|
7748 |
|
7749 /* alias for digit pointers */ |
|
7750 |
|
7751 /* first input */ |
|
7752 tmpa = a->dp; |
|
7753 |
|
7754 /* second input */ |
|
7755 tmpb = b->dp; |
|
7756 |
|
7757 /* destination */ |
|
7758 tmpc = c->dp; |
|
7759 |
|
7760 /* zero the carry */ |
|
7761 u = 0; |
|
7762 for (i = 0; i < min; i++) { |
|
7763 /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */ |
|
7764 *tmpc = *tmpa++ + *tmpb++ + u; |
|
7765 |
|
7766 /* U = carry bit of T[i] */ |
|
7767 u = *tmpc >> ((mp_digit)DIGIT_BIT); |
|
7768 |
|
7769 /* take away carry bit from T[i] */ |
|
7770 *tmpc++ &= MP_MASK; |
|
7771 } |
|
7772 |
|
7773 /* now copy higher words if any, that is in A+B |
|
7774 * if A or B has more digits add those in |
|
7775 */ |
|
7776 if (min != max) { |
|
7777 for (; i < max; i++) { |
|
7778 /* T[i] = X[i] + U */ |
|
7779 *tmpc = x->dp[i] + u; |
|
7780 |
|
7781 /* U = carry bit of T[i] */ |
|
7782 u = *tmpc >> ((mp_digit)DIGIT_BIT); |
|
7783 |
|
7784 /* take away carry bit from T[i] */ |
|
7785 *tmpc++ &= MP_MASK; |
|
7786 } |
|
7787 } |
|
7788 |
|
7789 /* add carry */ |
|
7790 *tmpc++ = u; |
|
7791 |
|
7792 /* clear digits above oldused */ |
|
7793 for (i = c->used; i < olduse; i++) { |
|
7794 *tmpc++ = 0; |
|
7795 } |
|
7796 } |
|
7797 |
|
7798 mp_clamp (c); |
|
7799 return MP_OKAY; |
|
7800 } |
|
7801 |
|
7802 /* End: bn_s_mp_add.c */ |
|
7803 |
|
7804 /* Start: bn_s_mp_exptmod.c */ |
|
7805 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
7806 * |
|
7807 * LibTomMath is a library that provides multiple-precision |
|
7808 * integer arithmetic as well as number theoretic functionality. |
|
7809 * |
|
7810 * The library was designed directly after the MPI library by |
|
7811 * Michael Fromberger but has been written from scratch with |
|
7812 * additional optimizations in place. |
|
7813 * |
|
7814 * The library is free for all purposes without any express |
|
7815 * guarantee it works. |
|
7816 * |
|
7817 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
7818 */ |
15
|
7819 #include <ltc_tommath.h> |
3
|
7820 |
|
7821 #ifdef MP_LOW_MEM |
|
7822 #define TAB_SIZE 32 |
|
7823 #else |
|
7824 #define TAB_SIZE 256 |
|
7825 #endif |
|
7826 |
|
7827 int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) |
|
7828 { |
|
7829 mp_int M[TAB_SIZE], res, mu; |
|
7830 mp_digit buf; |
|
7831 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; |
|
7832 |
|
7833 /* find window size */ |
|
7834 x = mp_count_bits (X); |
|
7835 if (x <= 7) { |
|
7836 winsize = 2; |
|
7837 } else if (x <= 36) { |
|
7838 winsize = 3; |
|
7839 } else if (x <= 140) { |
|
7840 winsize = 4; |
|
7841 } else if (x <= 450) { |
|
7842 winsize = 5; |
|
7843 } else if (x <= 1303) { |
|
7844 winsize = 6; |
|
7845 } else if (x <= 3529) { |
|
7846 winsize = 7; |
|
7847 } else { |
|
7848 winsize = 8; |
|
7849 } |
|
7850 |
|
7851 #ifdef MP_LOW_MEM |
|
7852 if (winsize > 5) { |
|
7853 winsize = 5; |
|
7854 } |
|
7855 #endif |
|
7856 |
|
7857 /* init M array */ |
|
7858 /* init first cell */ |
|
7859 if ((err = mp_init(&M[1])) != MP_OKAY) { |
|
7860 return err; |
|
7861 } |
|
7862 |
|
7863 /* now init the second half of the array */ |
|
7864 for (x = 1<<(winsize-1); x < (1 << winsize); x++) { |
|
7865 if ((err = mp_init(&M[x])) != MP_OKAY) { |
|
7866 for (y = 1<<(winsize-1); y < x; y++) { |
|
7867 mp_clear (&M[y]); |
|
7868 } |
|
7869 mp_clear(&M[1]); |
|
7870 return err; |
|
7871 } |
|
7872 } |
|
7873 |
|
7874 /* create mu, used for Barrett reduction */ |
|
7875 if ((err = mp_init (&mu)) != MP_OKAY) { |
|
7876 goto __M; |
|
7877 } |
|
7878 if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) { |
|
7879 goto __MU; |
|
7880 } |
|
7881 |
|
7882 /* create M table |
|
7883 * |
|
7884 * The M table contains powers of the base, |
|
7885 * e.g. M[x] = G**x mod P |
|
7886 * |
|
7887 * The first half of the table is not |
|
7888 * computed though accept for M[0] and M[1] |
|
7889 */ |
|
7890 if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) { |
|
7891 goto __MU; |
|
7892 } |
|
7893 |
|
7894 /* compute the value at M[1<<(winsize-1)] by squaring |
|
7895 * M[1] (winsize-1) times |
|
7896 */ |
|
7897 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { |
|
7898 goto __MU; |
|
7899 } |
|
7900 |
|
7901 for (x = 0; x < (winsize - 1); x++) { |
|
7902 if ((err = mp_sqr (&M[1 << (winsize - 1)], |
|
7903 &M[1 << (winsize - 1)])) != MP_OKAY) { |
|
7904 goto __MU; |
|
7905 } |
|
7906 if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) { |
|
7907 goto __MU; |
|
7908 } |
|
7909 } |
|
7910 |
|
7911 /* create upper table, that is M[x] = M[x-1] * M[1] (mod P) |
|
7912 * for x = (2**(winsize - 1) + 1) to (2**winsize - 1) |
|
7913 */ |
|
7914 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { |
|
7915 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { |
|
7916 goto __MU; |
|
7917 } |
|
7918 if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) { |
|
7919 goto __MU; |
|
7920 } |
|
7921 } |
|
7922 |
|
7923 /* setup result */ |
|
7924 if ((err = mp_init (&res)) != MP_OKAY) { |
|
7925 goto __MU; |
|
7926 } |
|
7927 mp_set (&res, 1); |
|
7928 |
|
7929 /* set initial mode and bit cnt */ |
|
7930 mode = 0; |
|
7931 bitcnt = 1; |
|
7932 buf = 0; |
|
7933 digidx = X->used - 1; |
|
7934 bitcpy = 0; |
|
7935 bitbuf = 0; |
|
7936 |
|
7937 for (;;) { |
|
7938 /* grab next digit as required */ |
|
7939 if (--bitcnt == 0) { |
|
7940 /* if digidx == -1 we are out of digits */ |
|
7941 if (digidx == -1) { |
|
7942 break; |
|
7943 } |
|
7944 /* read next digit and reset the bitcnt */ |
|
7945 buf = X->dp[digidx--]; |
|
7946 bitcnt = (int) DIGIT_BIT; |
|
7947 } |
|
7948 |
|
7949 /* grab the next msb from the exponent */ |
|
7950 y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1; |
|
7951 buf <<= (mp_digit)1; |
|
7952 |
|
7953 /* if the bit is zero and mode == 0 then we ignore it |
|
7954 * These represent the leading zero bits before the first 1 bit |
|
7955 * in the exponent. Technically this opt is not required but it |
|
7956 * does lower the # of trivial squaring/reductions used |
|
7957 */ |
|
7958 if (mode == 0 && y == 0) { |
|
7959 continue; |
|
7960 } |
|
7961 |
|
7962 /* if the bit is zero and mode == 1 then we square */ |
|
7963 if (mode == 1 && y == 0) { |
|
7964 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { |
|
7965 goto __RES; |
|
7966 } |
|
7967 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { |
|
7968 goto __RES; |
|
7969 } |
|
7970 continue; |
|
7971 } |
|
7972 |
|
7973 /* else we add it to the window */ |
|
7974 bitbuf |= (y << (winsize - ++bitcpy)); |
|
7975 mode = 2; |
|
7976 |
|
7977 if (bitcpy == winsize) { |
|
7978 /* ok window is filled so square as required and multiply */ |
|
7979 /* square first */ |
|
7980 for (x = 0; x < winsize; x++) { |
|
7981 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { |
|
7982 goto __RES; |
|
7983 } |
|
7984 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { |
|
7985 goto __RES; |
|
7986 } |
|
7987 } |
|
7988 |
|
7989 /* then multiply */ |
|
7990 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { |
|
7991 goto __RES; |
|
7992 } |
|
7993 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { |
|
7994 goto __RES; |
|
7995 } |
|
7996 |
|
7997 /* empty window and reset */ |
|
7998 bitcpy = 0; |
|
7999 bitbuf = 0; |
|
8000 mode = 1; |
|
8001 } |
|
8002 } |
|
8003 |
|
8004 /* if bits remain then square/multiply */ |
|
8005 if (mode == 2 && bitcpy > 0) { |
|
8006 /* square then multiply if the bit is set */ |
|
8007 for (x = 0; x < bitcpy; x++) { |
|
8008 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { |
|
8009 goto __RES; |
|
8010 } |
|
8011 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { |
|
8012 goto __RES; |
|
8013 } |
|
8014 |
|
8015 bitbuf <<= 1; |
|
8016 if ((bitbuf & (1 << winsize)) != 0) { |
|
8017 /* then multiply */ |
|
8018 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { |
|
8019 goto __RES; |
|
8020 } |
|
8021 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { |
|
8022 goto __RES; |
|
8023 } |
|
8024 } |
|
8025 } |
|
8026 } |
|
8027 |
|
8028 mp_exch (&res, Y); |
|
8029 err = MP_OKAY; |
|
8030 __RES:mp_clear (&res); |
|
8031 __MU:mp_clear (&mu); |
|
8032 __M: |
|
8033 mp_clear(&M[1]); |
|
8034 for (x = 1<<(winsize-1); x < (1 << winsize); x++) { |
|
8035 mp_clear (&M[x]); |
|
8036 } |
|
8037 return err; |
|
8038 } |
|
8039 |
|
8040 /* End: bn_s_mp_exptmod.c */ |
|
8041 |
|
8042 /* Start: bn_s_mp_mul_digs.c */ |
|
8043 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
8044 * |
|
8045 * LibTomMath is a library that provides multiple-precision |
|
8046 * integer arithmetic as well as number theoretic functionality. |
|
8047 * |
|
8048 * The library was designed directly after the MPI library by |
|
8049 * Michael Fromberger but has been written from scratch with |
|
8050 * additional optimizations in place. |
|
8051 * |
|
8052 * The library is free for all purposes without any express |
|
8053 * guarantee it works. |
|
8054 * |
|
8055 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
8056 */ |
15
|
8057 #include <ltc_tommath.h> |
3
|
8058 |
|
8059 /* multiplies |a| * |b| and only computes upto digs digits of result |
|
8060 * HAC pp. 595, Algorithm 14.12 Modified so you can control how |
|
8061 * many digits of output are created. |
|
8062 */ |
|
8063 int |
|
8064 s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) |
|
8065 { |
|
8066 mp_int t; |
|
8067 int res, pa, pb, ix, iy; |
|
8068 mp_digit u; |
|
8069 mp_word r; |
|
8070 mp_digit tmpx, *tmpt, *tmpy; |
|
8071 |
|
8072 /* can we use the fast multiplier? */ |
|
8073 if (((digs) < MP_WARRAY) && |
|
8074 MIN (a->used, b->used) < |
|
8075 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { |
|
8076 return fast_s_mp_mul_digs (a, b, c, digs); |
|
8077 } |
|
8078 |
|
8079 if ((res = mp_init_size (&t, digs)) != MP_OKAY) { |
|
8080 return res; |
|
8081 } |
|
8082 t.used = digs; |
|
8083 |
|
8084 /* compute the digits of the product directly */ |
|
8085 pa = a->used; |
|
8086 for (ix = 0; ix < pa; ix++) { |
|
8087 /* set the carry to zero */ |
|
8088 u = 0; |
|
8089 |
|
8090 /* limit ourselves to making digs digits of output */ |
|
8091 pb = MIN (b->used, digs - ix); |
|
8092 |
|
8093 /* setup some aliases */ |
|
8094 /* copy of the digit from a used within the nested loop */ |
|
8095 tmpx = a->dp[ix]; |
|
8096 |
|
8097 /* an alias for the destination shifted ix places */ |
|
8098 tmpt = t.dp + ix; |
|
8099 |
|
8100 /* an alias for the digits of b */ |
|
8101 tmpy = b->dp; |
|
8102 |
|
8103 /* compute the columns of the output and propagate the carry */ |
|
8104 for (iy = 0; iy < pb; iy++) { |
|
8105 /* compute the column as a mp_word */ |
|
8106 r = ((mp_word)*tmpt) + |
|
8107 ((mp_word)tmpx) * ((mp_word)*tmpy++) + |
|
8108 ((mp_word) u); |
|
8109 |
|
8110 /* the new column is the lower part of the result */ |
|
8111 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); |
|
8112 |
|
8113 /* get the carry word from the result */ |
|
8114 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); |
|
8115 } |
|
8116 /* set carry if it is placed below digs */ |
|
8117 if (ix + iy < digs) { |
|
8118 *tmpt = u; |
|
8119 } |
|
8120 } |
|
8121 |
|
8122 mp_clamp (&t); |
|
8123 mp_exch (&t, c); |
|
8124 |
|
8125 mp_clear (&t); |
|
8126 return MP_OKAY; |
|
8127 } |
|
8128 |
|
8129 /* End: bn_s_mp_mul_digs.c */ |
|
8130 |
|
8131 /* Start: bn_s_mp_mul_high_digs.c */ |
|
8132 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
8133 * |
|
8134 * LibTomMath is a library that provides multiple-precision |
|
8135 * integer arithmetic as well as number theoretic functionality. |
|
8136 * |
|
8137 * The library was designed directly after the MPI library by |
|
8138 * Michael Fromberger but has been written from scratch with |
|
8139 * additional optimizations in place. |
|
8140 * |
|
8141 * The library is free for all purposes without any express |
|
8142 * guarantee it works. |
|
8143 * |
|
8144 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
8145 */ |
15
|
8146 #include <ltc_tommath.h> |
3
|
8147 |
|
8148 /* multiplies |a| * |b| and does not compute the lower digs digits |
|
8149 * [meant to get the higher part of the product] |
|
8150 */ |
|
8151 int |
|
8152 s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) |
|
8153 { |
|
8154 mp_int t; |
|
8155 int res, pa, pb, ix, iy; |
|
8156 mp_digit u; |
|
8157 mp_word r; |
|
8158 mp_digit tmpx, *tmpt, *tmpy; |
|
8159 |
|
8160 /* can we use the fast multiplier? */ |
|
8161 if (((a->used + b->used + 1) < MP_WARRAY) |
|
8162 && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { |
|
8163 return fast_s_mp_mul_high_digs (a, b, c, digs); |
|
8164 } |
|
8165 |
|
8166 if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) { |
|
8167 return res; |
|
8168 } |
|
8169 t.used = a->used + b->used + 1; |
|
8170 |
|
8171 pa = a->used; |
|
8172 pb = b->used; |
|
8173 for (ix = 0; ix < pa; ix++) { |
|
8174 /* clear the carry */ |
|
8175 u = 0; |
|
8176 |
|
8177 /* left hand side of A[ix] * B[iy] */ |
|
8178 tmpx = a->dp[ix]; |
|
8179 |
|
8180 /* alias to the address of where the digits will be stored */ |
|
8181 tmpt = &(t.dp[digs]); |
|
8182 |
|
8183 /* alias for where to read the right hand side from */ |
|
8184 tmpy = b->dp + (digs - ix); |
|
8185 |
|
8186 for (iy = digs - ix; iy < pb; iy++) { |
|
8187 /* calculate the double precision result */ |
|
8188 r = ((mp_word)*tmpt) + |
|
8189 ((mp_word)tmpx) * ((mp_word)*tmpy++) + |
|
8190 ((mp_word) u); |
|
8191 |
|
8192 /* get the lower part */ |
|
8193 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); |
|
8194 |
|
8195 /* carry the carry */ |
|
8196 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); |
|
8197 } |
|
8198 *tmpt = u; |
|
8199 } |
|
8200 mp_clamp (&t); |
|
8201 mp_exch (&t, c); |
|
8202 mp_clear (&t); |
|
8203 return MP_OKAY; |
|
8204 } |
|
8205 |
|
8206 /* End: bn_s_mp_mul_high_digs.c */ |
|
8207 |
|
8208 /* Start: bn_s_mp_sqr.c */ |
|
8209 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
8210 * |
|
8211 * LibTomMath is a library that provides multiple-precision |
|
8212 * integer arithmetic as well as number theoretic functionality. |
|
8213 * |
|
8214 * The library was designed directly after the MPI library by |
|
8215 * Michael Fromberger but has been written from scratch with |
|
8216 * additional optimizations in place. |
|
8217 * |
|
8218 * The library is free for all purposes without any express |
|
8219 * guarantee it works. |
|
8220 * |
|
8221 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
8222 */ |
15
|
8223 #include <ltc_tommath.h> |
3
|
8224 |
|
8225 /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */ |
|
8226 int |
|
8227 s_mp_sqr (mp_int * a, mp_int * b) |
|
8228 { |
|
8229 mp_int t; |
|
8230 int res, ix, iy, pa; |
|
8231 mp_word r; |
|
8232 mp_digit u, tmpx, *tmpt; |
|
8233 |
|
8234 pa = a->used; |
|
8235 if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) { |
|
8236 return res; |
|
8237 } |
|
8238 |
|
8239 /* default used is maximum possible size */ |
|
8240 t.used = 2*pa + 1; |
|
8241 |
|
8242 for (ix = 0; ix < pa; ix++) { |
|
8243 /* first calculate the digit at 2*ix */ |
|
8244 /* calculate double precision result */ |
|
8245 r = ((mp_word) t.dp[2*ix]) + |
|
8246 ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]); |
|
8247 |
|
8248 /* store lower part in result */ |
|
8249 t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK)); |
|
8250 |
|
8251 /* get the carry */ |
|
8252 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); |
|
8253 |
|
8254 /* left hand side of A[ix] * A[iy] */ |
|
8255 tmpx = a->dp[ix]; |
|
8256 |
|
8257 /* alias for where to store the results */ |
|
8258 tmpt = t.dp + (2*ix + 1); |
|
8259 |
|
8260 for (iy = ix + 1; iy < pa; iy++) { |
|
8261 /* first calculate the product */ |
|
8262 r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]); |
|
8263 |
|
8264 /* now calculate the double precision result, note we use |
|
8265 * addition instead of *2 since it's easier to optimize |
|
8266 */ |
|
8267 r = ((mp_word) *tmpt) + r + r + ((mp_word) u); |
|
8268 |
|
8269 /* store lower part */ |
|
8270 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); |
|
8271 |
|
8272 /* get carry */ |
|
8273 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); |
|
8274 } |
|
8275 /* propagate upwards */ |
|
8276 while (u != ((mp_digit) 0)) { |
|
8277 r = ((mp_word) *tmpt) + ((mp_word) u); |
|
8278 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); |
|
8279 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); |
|
8280 } |
|
8281 } |
|
8282 |
|
8283 mp_clamp (&t); |
|
8284 mp_exch (&t, b); |
|
8285 mp_clear (&t); |
|
8286 return MP_OKAY; |
|
8287 } |
|
8288 |
|
8289 /* End: bn_s_mp_sqr.c */ |
|
8290 |
|
8291 /* Start: bn_s_mp_sub.c */ |
|
8292 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
8293 * |
|
8294 * LibTomMath is a library that provides multiple-precision |
|
8295 * integer arithmetic as well as number theoretic functionality. |
|
8296 * |
|
8297 * The library was designed directly after the MPI library by |
|
8298 * Michael Fromberger but has been written from scratch with |
|
8299 * additional optimizations in place. |
|
8300 * |
|
8301 * The library is free for all purposes without any express |
|
8302 * guarantee it works. |
|
8303 * |
|
8304 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
8305 */ |
15
|
8306 #include <ltc_tommath.h> |
3
|
8307 |
|
8308 /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */ |
|
8309 int |
|
8310 s_mp_sub (mp_int * a, mp_int * b, mp_int * c) |
|
8311 { |
|
8312 int olduse, res, min, max; |
|
8313 |
|
8314 /* find sizes */ |
|
8315 min = b->used; |
|
8316 max = a->used; |
|
8317 |
|
8318 /* init result */ |
|
8319 if (c->alloc < max) { |
|
8320 if ((res = mp_grow (c, max)) != MP_OKAY) { |
|
8321 return res; |
|
8322 } |
|
8323 } |
|
8324 olduse = c->used; |
|
8325 c->used = max; |
|
8326 |
|
8327 { |
|
8328 register mp_digit u, *tmpa, *tmpb, *tmpc; |
|
8329 register int i; |
|
8330 |
|
8331 /* alias for digit pointers */ |
|
8332 tmpa = a->dp; |
|
8333 tmpb = b->dp; |
|
8334 tmpc = c->dp; |
|
8335 |
|
8336 /* set carry to zero */ |
|
8337 u = 0; |
|
8338 for (i = 0; i < min; i++) { |
|
8339 /* T[i] = A[i] - B[i] - U */ |
|
8340 *tmpc = *tmpa++ - *tmpb++ - u; |
|
8341 |
|
8342 /* U = carry bit of T[i] |
|
8343 * Note this saves performing an AND operation since |
|
8344 * if a carry does occur it will propagate all the way to the |
|
8345 * MSB. As a result a single shift is enough to get the carry |
|
8346 */ |
|
8347 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); |
|
8348 |
|
8349 /* Clear carry from T[i] */ |
|
8350 *tmpc++ &= MP_MASK; |
|
8351 } |
|
8352 |
|
8353 /* now copy higher words if any, e.g. if A has more digits than B */ |
|
8354 for (; i < max; i++) { |
|
8355 /* T[i] = A[i] - U */ |
|
8356 *tmpc = *tmpa++ - u; |
|
8357 |
|
8358 /* U = carry bit of T[i] */ |
|
8359 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); |
|
8360 |
|
8361 /* Clear carry from T[i] */ |
|
8362 *tmpc++ &= MP_MASK; |
|
8363 } |
|
8364 |
|
8365 /* clear digits above used (since we may not have grown result above) */ |
|
8366 for (i = c->used; i < olduse; i++) { |
|
8367 *tmpc++ = 0; |
|
8368 } |
|
8369 } |
|
8370 |
|
8371 mp_clamp (c); |
|
8372 return MP_OKAY; |
|
8373 } |
|
8374 |
|
8375 |
|
8376 /* End: bn_s_mp_sub.c */ |
|
8377 |
|
8378 /* Start: bncore.c */ |
|
8379 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
8380 * |
|
8381 * LibTomMath is a library that provides multiple-precision |
|
8382 * integer arithmetic as well as number theoretic functionality. |
|
8383 * |
|
8384 * The library was designed directly after the MPI library by |
|
8385 * Michael Fromberger but has been written from scratch with |
|
8386 * additional optimizations in place. |
|
8387 * |
|
8388 * The library is free for all purposes without any express |
|
8389 * guarantee it works. |
|
8390 * |
|
8391 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
8392 */ |
15
|
8393 #include <ltc_tommath.h> |
3
|
8394 |
|
8395 /* Known optimal configurations |
|
8396 |
|
8397 CPU /Compiler /MUL CUTOFF/SQR CUTOFF |
|
8398 ------------------------------------------------------------- |
15
|
8399 Intel P4 Northwood /GCC v3.3.3 / 59/ 81/profiled build |
|
8400 Intel P4 Northwood /GCC v3.3.3 / 59/ 80/profiled_single build |
|
8401 Intel P4 Northwood /ICC v8.0 / 57/ 70/profiled build |
|
8402 Intel P4 Northwood /ICC v8.0 / 54/ 76/profiled_single build |
|
8403 AMD Athlon XP /GCC v3.2 / 109/ 127/ |
|
8404 |
3
|
8405 */ |
|
8406 |
15
|
8407 int KARATSUBA_MUL_CUTOFF = 57, /* Min. number of digits before Karatsuba multiplication is used. */ |
|
8408 KARATSUBA_SQR_CUTOFF = 70, /* Min. number of digits before Karatsuba squaring is used. */ |
3
|
8409 |
|
8410 TOOM_MUL_CUTOFF = 350, /* no optimal values of these are known yet so set em high */ |
|
8411 TOOM_SQR_CUTOFF = 400; |
|
8412 |
|
8413 /* End: bncore.c */ |
|
8414 |
|
8415 |
|
8416 /* EOF */ |