1
|
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
2 * |
|
3 * LibTomMath is a library that provides multiple-precision |
|
4 * integer arithmetic as well as number theoretic functionality. |
|
5 * |
|
6 * The library was designed directly after the MPI library by |
|
7 * Michael Fromberger but has been written from scratch with |
|
8 * additional optimizations in place. |
|
9 * |
|
10 * The library is free for all purposes without any express |
|
11 * guarantee it works. |
|
12 * |
|
13 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
14 */ |
|
15 #include <tommath.h> |
|
16 |
|
17 /* Miller-Rabin test of "a" to the base of "b" as described in |
|
18 * HAC pp. 139 Algorithm 4.24 |
|
19 * |
|
20 * Sets result to 0 if definitely composite or 1 if probably prime. |
|
21 * Randomly the chance of error is no more than 1/4 and often |
|
22 * very much lower. |
|
23 */ |
|
24 int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result) |
|
25 { |
|
26 mp_int n1, y, r; |
|
27 int s, j, err; |
|
28 |
|
29 /* default */ |
|
30 *result = MP_NO; |
|
31 |
|
32 /* ensure b > 1 */ |
|
33 if (mp_cmp_d(b, 1) != MP_GT) { |
|
34 return MP_VAL; |
|
35 } |
|
36 |
|
37 /* get n1 = a - 1 */ |
|
38 if ((err = mp_init_copy (&n1, a)) != MP_OKAY) { |
|
39 return err; |
|
40 } |
|
41 if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) { |
|
42 goto __N1; |
|
43 } |
|
44 |
|
45 /* set 2**s * r = n1 */ |
|
46 if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) { |
|
47 goto __N1; |
|
48 } |
|
49 |
|
50 /* count the number of least significant bits |
|
51 * which are zero |
|
52 */ |
|
53 s = mp_cnt_lsb(&r); |
|
54 |
|
55 /* now divide n - 1 by 2**s */ |
|
56 if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) { |
|
57 goto __R; |
|
58 } |
|
59 |
|
60 /* compute y = b**r mod a */ |
|
61 if ((err = mp_init (&y)) != MP_OKAY) { |
|
62 goto __R; |
|
63 } |
|
64 if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) { |
|
65 goto __Y; |
|
66 } |
|
67 |
|
68 /* if y != 1 and y != n1 do */ |
|
69 if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) { |
|
70 j = 1; |
|
71 /* while j <= s-1 and y != n1 */ |
|
72 while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) { |
|
73 if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) { |
|
74 goto __Y; |
|
75 } |
|
76 |
|
77 /* if y == 1 then composite */ |
|
78 if (mp_cmp_d (&y, 1) == MP_EQ) { |
|
79 goto __Y; |
|
80 } |
|
81 |
|
82 ++j; |
|
83 } |
|
84 |
|
85 /* if y != n1 then composite */ |
|
86 if (mp_cmp (&y, &n1) != MP_EQ) { |
|
87 goto __Y; |
|
88 } |
|
89 } |
|
90 |
|
91 /* probably prime now */ |
|
92 *result = MP_YES; |
|
93 __Y:mp_clear (&y); |
|
94 __R:mp_clear (&r); |
|
95 __N1:mp_clear (&n1); |
|
96 return err; |
|
97 } |