1
|
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
2 * |
|
3 * LibTomMath is a library that provides multiple-precision |
|
4 * integer arithmetic as well as number theoretic functionality. |
|
5 * |
|
6 * The library was designed directly after the MPI library by |
|
7 * Michael Fromberger but has been written from scratch with |
|
8 * additional optimizations in place. |
|
9 * |
|
10 * The library is free for all purposes without any express |
|
11 * guarantee it works. |
|
12 * |
|
13 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
14 */ |
|
15 #include <tommath.h> |
|
16 |
|
17 #ifdef MP_LOW_MEM |
|
18 #define TAB_SIZE 32 |
|
19 #else |
|
20 #define TAB_SIZE 256 |
|
21 #endif |
|
22 |
|
23 int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) |
|
24 { |
|
25 mp_int M[TAB_SIZE], res, mu; |
|
26 mp_digit buf; |
|
27 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; |
|
28 |
|
29 /* find window size */ |
|
30 x = mp_count_bits (X); |
|
31 if (x <= 7) { |
|
32 winsize = 2; |
|
33 } else if (x <= 36) { |
|
34 winsize = 3; |
|
35 } else if (x <= 140) { |
|
36 winsize = 4; |
|
37 } else if (x <= 450) { |
|
38 winsize = 5; |
|
39 } else if (x <= 1303) { |
|
40 winsize = 6; |
|
41 } else if (x <= 3529) { |
|
42 winsize = 7; |
|
43 } else { |
|
44 winsize = 8; |
|
45 } |
|
46 |
|
47 #ifdef MP_LOW_MEM |
|
48 if (winsize > 5) { |
|
49 winsize = 5; |
|
50 } |
|
51 #endif |
|
52 |
|
53 /* init M array */ |
|
54 /* init first cell */ |
|
55 if ((err = mp_init(&M[1])) != MP_OKAY) { |
|
56 return err; |
|
57 } |
|
58 |
|
59 /* now init the second half of the array */ |
|
60 for (x = 1<<(winsize-1); x < (1 << winsize); x++) { |
|
61 if ((err = mp_init(&M[x])) != MP_OKAY) { |
|
62 for (y = 1<<(winsize-1); y < x; y++) { |
|
63 mp_clear (&M[y]); |
|
64 } |
|
65 mp_clear(&M[1]); |
|
66 return err; |
|
67 } |
|
68 } |
|
69 |
|
70 /* create mu, used for Barrett reduction */ |
|
71 if ((err = mp_init (&mu)) != MP_OKAY) { |
|
72 goto __M; |
|
73 } |
|
74 if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) { |
|
75 goto __MU; |
|
76 } |
|
77 |
|
78 /* create M table |
|
79 * |
|
80 * The M table contains powers of the base, |
|
81 * e.g. M[x] = G**x mod P |
|
82 * |
|
83 * The first half of the table is not |
|
84 * computed though accept for M[0] and M[1] |
|
85 */ |
|
86 if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) { |
|
87 goto __MU; |
|
88 } |
|
89 |
|
90 /* compute the value at M[1<<(winsize-1)] by squaring |
|
91 * M[1] (winsize-1) times |
|
92 */ |
|
93 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { |
|
94 goto __MU; |
|
95 } |
|
96 |
|
97 for (x = 0; x < (winsize - 1); x++) { |
|
98 if ((err = mp_sqr (&M[1 << (winsize - 1)], |
|
99 &M[1 << (winsize - 1)])) != MP_OKAY) { |
|
100 goto __MU; |
|
101 } |
|
102 if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) { |
|
103 goto __MU; |
|
104 } |
|
105 } |
|
106 |
|
107 /* create upper table, that is M[x] = M[x-1] * M[1] (mod P) |
|
108 * for x = (2**(winsize - 1) + 1) to (2**winsize - 1) |
|
109 */ |
|
110 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { |
|
111 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { |
|
112 goto __MU; |
|
113 } |
|
114 if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) { |
|
115 goto __MU; |
|
116 } |
|
117 } |
|
118 |
|
119 /* setup result */ |
|
120 if ((err = mp_init (&res)) != MP_OKAY) { |
|
121 goto __MU; |
|
122 } |
|
123 mp_set (&res, 1); |
|
124 |
|
125 /* set initial mode and bit cnt */ |
|
126 mode = 0; |
|
127 bitcnt = 1; |
|
128 buf = 0; |
|
129 digidx = X->used - 1; |
|
130 bitcpy = 0; |
|
131 bitbuf = 0; |
|
132 |
|
133 for (;;) { |
|
134 /* grab next digit as required */ |
|
135 if (--bitcnt == 0) { |
|
136 /* if digidx == -1 we are out of digits */ |
|
137 if (digidx == -1) { |
|
138 break; |
|
139 } |
|
140 /* read next digit and reset the bitcnt */ |
|
141 buf = X->dp[digidx--]; |
|
142 bitcnt = (int) DIGIT_BIT; |
|
143 } |
|
144 |
|
145 /* grab the next msb from the exponent */ |
|
146 y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1; |
|
147 buf <<= (mp_digit)1; |
|
148 |
|
149 /* if the bit is zero and mode == 0 then we ignore it |
|
150 * These represent the leading zero bits before the first 1 bit |
|
151 * in the exponent. Technically this opt is not required but it |
|
152 * does lower the # of trivial squaring/reductions used |
|
153 */ |
|
154 if (mode == 0 && y == 0) { |
|
155 continue; |
|
156 } |
|
157 |
|
158 /* if the bit is zero and mode == 1 then we square */ |
|
159 if (mode == 1 && y == 0) { |
|
160 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { |
|
161 goto __RES; |
|
162 } |
|
163 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { |
|
164 goto __RES; |
|
165 } |
|
166 continue; |
|
167 } |
|
168 |
|
169 /* else we add it to the window */ |
|
170 bitbuf |= (y << (winsize - ++bitcpy)); |
|
171 mode = 2; |
|
172 |
|
173 if (bitcpy == winsize) { |
|
174 /* ok window is filled so square as required and multiply */ |
|
175 /* square first */ |
|
176 for (x = 0; x < winsize; x++) { |
|
177 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { |
|
178 goto __RES; |
|
179 } |
|
180 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { |
|
181 goto __RES; |
|
182 } |
|
183 } |
|
184 |
|
185 /* then multiply */ |
|
186 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { |
|
187 goto __RES; |
|
188 } |
|
189 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { |
|
190 goto __RES; |
|
191 } |
|
192 |
|
193 /* empty window and reset */ |
|
194 bitcpy = 0; |
|
195 bitbuf = 0; |
|
196 mode = 1; |
|
197 } |
|
198 } |
|
199 |
|
200 /* if bits remain then square/multiply */ |
|
201 if (mode == 2 && bitcpy > 0) { |
|
202 /* square then multiply if the bit is set */ |
|
203 for (x = 0; x < bitcpy; x++) { |
|
204 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { |
|
205 goto __RES; |
|
206 } |
|
207 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { |
|
208 goto __RES; |
|
209 } |
|
210 |
|
211 bitbuf <<= 1; |
|
212 if ((bitbuf & (1 << winsize)) != 0) { |
|
213 /* then multiply */ |
|
214 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { |
|
215 goto __RES; |
|
216 } |
|
217 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { |
|
218 goto __RES; |
|
219 } |
|
220 } |
|
221 } |
|
222 } |
|
223 |
|
224 mp_exch (&res, Y); |
|
225 err = MP_OKAY; |
|
226 __RES:mp_clear (&res); |
|
227 __MU:mp_clear (&mu); |
|
228 __M: |
|
229 mp_clear(&M[1]); |
|
230 for (x = 1<<(winsize-1); x < (1 << winsize); x++) { |
|
231 mp_clear (&M[x]); |
|
232 } |
|
233 return err; |
|
234 } |