Mercurial > dropbear
annotate curve25519-donna.c @ 1320:8493172e4f3c
merge
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Fri, 09 Sep 2016 21:08:32 +0800 |
parents | d3925ed45a85 |
children | 27b9ddb06b09 |
rev | line source |
---|---|
848 | 1 /* Copyright 2008, Google Inc. |
2 * All rights reserved. | |
3 * | |
4 * Redistribution and use in source and binary forms, with or without | |
5 * modification, are permitted provided that the following conditions are | |
6 * met: | |
7 * | |
8 * * Redistributions of source code must retain the above copyright | |
9 * notice, this list of conditions and the following disclaimer. | |
10 * * Redistributions in binary form must reproduce the above | |
11 * copyright notice, this list of conditions and the following disclaimer | |
12 * in the documentation and/or other materials provided with the | |
13 * distribution. | |
14 * * Neither the name of Google Inc. nor the names of its | |
15 * contributors may be used to endorse or promote products derived from | |
16 * this software without specific prior written permission. | |
17 * | |
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
29 * | |
30 * curve25519-donna: Curve25519 elliptic curve, public key function | |
31 * | |
32 * http://code.google.com/p/curve25519-donna/ | |
33 * | |
34 * Adam Langley <[email protected]> | |
35 * | |
36 * Derived from public domain C code by Daniel J. Bernstein <[email protected]> | |
37 * | |
38 * More information about curve25519 can be found here | |
39 * http://cr.yp.to/ecdh.html | |
40 * | |
41 * djb's sample implementation of curve25519 is written in a special assembly | |
42 * language called qhasm and uses the floating point registers. | |
43 * | |
44 * This is, almost, a clean room reimplementation from the curve25519 paper. It | |
45 * uses many of the tricks described therein. Only the crecip function is taken | |
46 * from the sample implementation. | |
47 */ | |
48 | |
49 #include <string.h> | |
50 #include <stdint.h> | |
51 | |
52 #ifdef _MSC_VER | |
53 #define inline __inline | |
54 #endif | |
55 | |
56 typedef uint8_t u8; | |
57 typedef int32_t s32; | |
58 typedef int64_t limb; | |
59 | |
60 /* Field element representation: | |
61 * | |
62 * Field elements are written as an array of signed, 64-bit limbs, least | |
63 * significant first. The value of the field element is: | |
64 * x[0] + 2^26·x[1] + x^51·x[2] + 2^102·x[3] + ... | |
65 * | |
66 * i.e. the limbs are 26, 25, 26, 25, ... bits wide. | |
67 */ | |
68 | |
69 /* Sum two numbers: output += in */ | |
70 static void fsum(limb *output, const limb *in) { | |
71 unsigned i; | |
72 for (i = 0; i < 10; i += 2) { | |
73 output[0+i] = (output[0+i] + in[0+i]); | |
74 output[1+i] = (output[1+i] + in[1+i]); | |
75 } | |
76 } | |
77 | |
78 /* Find the difference of two numbers: output = in - output | |
79 * (note the order of the arguments!) | |
80 */ | |
81 static void fdifference(limb *output, const limb *in) { | |
82 unsigned i; | |
83 for (i = 0; i < 10; ++i) { | |
84 output[i] = (in[i] - output[i]); | |
85 } | |
86 } | |
87 | |
88 /* Multiply a number by a scalar: output = in * scalar */ | |
89 static void fscalar_product(limb *output, const limb *in, const limb scalar) { | |
90 unsigned i; | |
91 for (i = 0; i < 10; ++i) { | |
92 output[i] = in[i] * scalar; | |
93 } | |
94 } | |
95 | |
96 /* Multiply two numbers: output = in2 * in | |
97 * | |
98 * output must be distinct to both inputs. The inputs are reduced coefficient | |
99 * form, the output is not. | |
100 */ | |
101 static void fproduct(limb *output, const limb *in2, const limb *in) { | |
102 output[0] = ((limb) ((s32) in2[0])) * ((s32) in[0]); | |
103 output[1] = ((limb) ((s32) in2[0])) * ((s32) in[1]) + | |
104 ((limb) ((s32) in2[1])) * ((s32) in[0]); | |
105 output[2] = 2 * ((limb) ((s32) in2[1])) * ((s32) in[1]) + | |
106 ((limb) ((s32) in2[0])) * ((s32) in[2]) + | |
107 ((limb) ((s32) in2[2])) * ((s32) in[0]); | |
108 output[3] = ((limb) ((s32) in2[1])) * ((s32) in[2]) + | |
109 ((limb) ((s32) in2[2])) * ((s32) in[1]) + | |
110 ((limb) ((s32) in2[0])) * ((s32) in[3]) + | |
111 ((limb) ((s32) in2[3])) * ((s32) in[0]); | |
112 output[4] = ((limb) ((s32) in2[2])) * ((s32) in[2]) + | |
113 2 * (((limb) ((s32) in2[1])) * ((s32) in[3]) + | |
114 ((limb) ((s32) in2[3])) * ((s32) in[1])) + | |
115 ((limb) ((s32) in2[0])) * ((s32) in[4]) + | |
116 ((limb) ((s32) in2[4])) * ((s32) in[0]); | |
117 output[5] = ((limb) ((s32) in2[2])) * ((s32) in[3]) + | |
118 ((limb) ((s32) in2[3])) * ((s32) in[2]) + | |
119 ((limb) ((s32) in2[1])) * ((s32) in[4]) + | |
120 ((limb) ((s32) in2[4])) * ((s32) in[1]) + | |
121 ((limb) ((s32) in2[0])) * ((s32) in[5]) + | |
122 ((limb) ((s32) in2[5])) * ((s32) in[0]); | |
123 output[6] = 2 * (((limb) ((s32) in2[3])) * ((s32) in[3]) + | |
124 ((limb) ((s32) in2[1])) * ((s32) in[5]) + | |
125 ((limb) ((s32) in2[5])) * ((s32) in[1])) + | |
126 ((limb) ((s32) in2[2])) * ((s32) in[4]) + | |
127 ((limb) ((s32) in2[4])) * ((s32) in[2]) + | |
128 ((limb) ((s32) in2[0])) * ((s32) in[6]) + | |
129 ((limb) ((s32) in2[6])) * ((s32) in[0]); | |
130 output[7] = ((limb) ((s32) in2[3])) * ((s32) in[4]) + | |
131 ((limb) ((s32) in2[4])) * ((s32) in[3]) + | |
132 ((limb) ((s32) in2[2])) * ((s32) in[5]) + | |
133 ((limb) ((s32) in2[5])) * ((s32) in[2]) + | |
134 ((limb) ((s32) in2[1])) * ((s32) in[6]) + | |
135 ((limb) ((s32) in2[6])) * ((s32) in[1]) + | |
136 ((limb) ((s32) in2[0])) * ((s32) in[7]) + | |
137 ((limb) ((s32) in2[7])) * ((s32) in[0]); | |
138 output[8] = ((limb) ((s32) in2[4])) * ((s32) in[4]) + | |
139 2 * (((limb) ((s32) in2[3])) * ((s32) in[5]) + | |
140 ((limb) ((s32) in2[5])) * ((s32) in[3]) + | |
141 ((limb) ((s32) in2[1])) * ((s32) in[7]) + | |
142 ((limb) ((s32) in2[7])) * ((s32) in[1])) + | |
143 ((limb) ((s32) in2[2])) * ((s32) in[6]) + | |
144 ((limb) ((s32) in2[6])) * ((s32) in[2]) + | |
145 ((limb) ((s32) in2[0])) * ((s32) in[8]) + | |
146 ((limb) ((s32) in2[8])) * ((s32) in[0]); | |
147 output[9] = ((limb) ((s32) in2[4])) * ((s32) in[5]) + | |
148 ((limb) ((s32) in2[5])) * ((s32) in[4]) + | |
149 ((limb) ((s32) in2[3])) * ((s32) in[6]) + | |
150 ((limb) ((s32) in2[6])) * ((s32) in[3]) + | |
151 ((limb) ((s32) in2[2])) * ((s32) in[7]) + | |
152 ((limb) ((s32) in2[7])) * ((s32) in[2]) + | |
153 ((limb) ((s32) in2[1])) * ((s32) in[8]) + | |
154 ((limb) ((s32) in2[8])) * ((s32) in[1]) + | |
155 ((limb) ((s32) in2[0])) * ((s32) in[9]) + | |
156 ((limb) ((s32) in2[9])) * ((s32) in[0]); | |
157 output[10] = 2 * (((limb) ((s32) in2[5])) * ((s32) in[5]) + | |
158 ((limb) ((s32) in2[3])) * ((s32) in[7]) + | |
159 ((limb) ((s32) in2[7])) * ((s32) in[3]) + | |
160 ((limb) ((s32) in2[1])) * ((s32) in[9]) + | |
161 ((limb) ((s32) in2[9])) * ((s32) in[1])) + | |
162 ((limb) ((s32) in2[4])) * ((s32) in[6]) + | |
163 ((limb) ((s32) in2[6])) * ((s32) in[4]) + | |
164 ((limb) ((s32) in2[2])) * ((s32) in[8]) + | |
165 ((limb) ((s32) in2[8])) * ((s32) in[2]); | |
166 output[11] = ((limb) ((s32) in2[5])) * ((s32) in[6]) + | |
167 ((limb) ((s32) in2[6])) * ((s32) in[5]) + | |
168 ((limb) ((s32) in2[4])) * ((s32) in[7]) + | |
169 ((limb) ((s32) in2[7])) * ((s32) in[4]) + | |
170 ((limb) ((s32) in2[3])) * ((s32) in[8]) + | |
171 ((limb) ((s32) in2[8])) * ((s32) in[3]) + | |
172 ((limb) ((s32) in2[2])) * ((s32) in[9]) + | |
173 ((limb) ((s32) in2[9])) * ((s32) in[2]); | |
174 output[12] = ((limb) ((s32) in2[6])) * ((s32) in[6]) + | |
175 2 * (((limb) ((s32) in2[5])) * ((s32) in[7]) + | |
176 ((limb) ((s32) in2[7])) * ((s32) in[5]) + | |
177 ((limb) ((s32) in2[3])) * ((s32) in[9]) + | |
178 ((limb) ((s32) in2[9])) * ((s32) in[3])) + | |
179 ((limb) ((s32) in2[4])) * ((s32) in[8]) + | |
180 ((limb) ((s32) in2[8])) * ((s32) in[4]); | |
181 output[13] = ((limb) ((s32) in2[6])) * ((s32) in[7]) + | |
182 ((limb) ((s32) in2[7])) * ((s32) in[6]) + | |
183 ((limb) ((s32) in2[5])) * ((s32) in[8]) + | |
184 ((limb) ((s32) in2[8])) * ((s32) in[5]) + | |
185 ((limb) ((s32) in2[4])) * ((s32) in[9]) + | |
186 ((limb) ((s32) in2[9])) * ((s32) in[4]); | |
187 output[14] = 2 * (((limb) ((s32) in2[7])) * ((s32) in[7]) + | |
188 ((limb) ((s32) in2[5])) * ((s32) in[9]) + | |
189 ((limb) ((s32) in2[9])) * ((s32) in[5])) + | |
190 ((limb) ((s32) in2[6])) * ((s32) in[8]) + | |
191 ((limb) ((s32) in2[8])) * ((s32) in[6]); | |
192 output[15] = ((limb) ((s32) in2[7])) * ((s32) in[8]) + | |
193 ((limb) ((s32) in2[8])) * ((s32) in[7]) + | |
194 ((limb) ((s32) in2[6])) * ((s32) in[9]) + | |
195 ((limb) ((s32) in2[9])) * ((s32) in[6]); | |
196 output[16] = ((limb) ((s32) in2[8])) * ((s32) in[8]) + | |
197 2 * (((limb) ((s32) in2[7])) * ((s32) in[9]) + | |
198 ((limb) ((s32) in2[9])) * ((s32) in[7])); | |
199 output[17] = ((limb) ((s32) in2[8])) * ((s32) in[9]) + | |
200 ((limb) ((s32) in2[9])) * ((s32) in[8]); | |
201 output[18] = 2 * ((limb) ((s32) in2[9])) * ((s32) in[9]); | |
202 } | |
203 | |
204 /* Reduce a long form to a short form by taking the input mod 2^255 - 19. */ | |
205 static void freduce_degree(limb *output) { | |
206 /* Each of these shifts and adds ends up multiplying the value by 19. */ | |
207 output[8] += output[18] << 4; | |
208 output[8] += output[18] << 1; | |
209 output[8] += output[18]; | |
210 output[7] += output[17] << 4; | |
211 output[7] += output[17] << 1; | |
212 output[7] += output[17]; | |
213 output[6] += output[16] << 4; | |
214 output[6] += output[16] << 1; | |
215 output[6] += output[16]; | |
216 output[5] += output[15] << 4; | |
217 output[5] += output[15] << 1; | |
218 output[5] += output[15]; | |
219 output[4] += output[14] << 4; | |
220 output[4] += output[14] << 1; | |
221 output[4] += output[14]; | |
222 output[3] += output[13] << 4; | |
223 output[3] += output[13] << 1; | |
224 output[3] += output[13]; | |
225 output[2] += output[12] << 4; | |
226 output[2] += output[12] << 1; | |
227 output[2] += output[12]; | |
228 output[1] += output[11] << 4; | |
229 output[1] += output[11] << 1; | |
230 output[1] += output[11]; | |
231 output[0] += output[10] << 4; | |
232 output[0] += output[10] << 1; | |
233 output[0] += output[10]; | |
234 } | |
235 | |
236 #if (-1 & 3) != 3 | |
237 #error "This code only works on a two's complement system" | |
238 #endif | |
239 | |
240 /* return v / 2^26, using only shifts and adds. */ | |
241 static inline limb | |
242 div_by_2_26(const limb v) | |
243 { | |
244 /* High word of v; no shift needed*/ | |
245 const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32); | |
246 /* Set to all 1s if v was negative; else set to 0s. */ | |
247 const int32_t sign = ((int32_t) highword) >> 31; | |
248 /* Set to 0x3ffffff if v was negative; else set to 0. */ | |
249 const int32_t roundoff = ((uint32_t) sign) >> 6; | |
250 /* Should return v / (1<<26) */ | |
251 return (v + roundoff) >> 26; | |
252 } | |
253 | |
254 /* return v / (2^25), using only shifts and adds. */ | |
255 static inline limb | |
256 div_by_2_25(const limb v) | |
257 { | |
258 /* High word of v; no shift needed*/ | |
259 const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32); | |
260 /* Set to all 1s if v was negative; else set to 0s. */ | |
261 const int32_t sign = ((int32_t) highword) >> 31; | |
262 /* Set to 0x1ffffff if v was negative; else set to 0. */ | |
263 const int32_t roundoff = ((uint32_t) sign) >> 7; | |
264 /* Should return v / (1<<25) */ | |
265 return (v + roundoff) >> 25; | |
266 } | |
267 | |
268 static inline s32 | |
269 div_s32_by_2_25(const s32 v) | |
270 { | |
271 const s32 roundoff = ((uint32_t)(v >> 31)) >> 7; | |
272 return (v + roundoff) >> 25; | |
273 } | |
274 | |
275 /* Reduce all coefficients of the short form input so that |x| < 2^26. | |
276 * | |
277 * On entry: |output[i]| < 2^62 | |
278 */ | |
279 static void freduce_coefficients(limb *output) { | |
280 unsigned i; | |
281 | |
282 output[10] = 0; | |
283 | |
284 for (i = 0; i < 10; i += 2) { | |
285 limb over = div_by_2_26(output[i]); | |
286 output[i] -= over << 26; | |
287 output[i+1] += over; | |
288 | |
289 over = div_by_2_25(output[i+1]); | |
290 output[i+1] -= over << 25; | |
291 output[i+2] += over; | |
292 } | |
293 /* Now |output[10]| < 2 ^ 38 and all other coefficients are reduced. */ | |
294 output[0] += output[10] << 4; | |
295 output[0] += output[10] << 1; | |
296 output[0] += output[10]; | |
297 | |
298 output[10] = 0; | |
299 | |
300 /* Now output[1..9] are reduced, and |output[0]| < 2^26 + 19 * 2^38 | |
301 * So |over| will be no more than 77825 */ | |
302 { | |
303 limb over = div_by_2_26(output[0]); | |
304 output[0] -= over << 26; | |
305 output[1] += over; | |
306 } | |
307 | |
308 /* Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 77825 | |
309 * So |over| will be no more than 1. */ | |
310 { | |
311 /* output[1] fits in 32 bits, so we can use div_s32_by_2_25 here. */ | |
312 s32 over32 = div_s32_by_2_25((s32) output[1]); | |
313 output[1] -= over32 << 25; | |
314 output[2] += over32; | |
315 } | |
316 | |
317 /* Finally, output[0,1,3..9] are reduced, and output[2] is "nearly reduced": | |
318 * we have |output[2]| <= 2^26. This is good enough for all of our math, | |
319 * but it will require an extra freduce_coefficients before fcontract. */ | |
320 } | |
321 | |
322 /* A helpful wrapper around fproduct: output = in * in2. | |
323 * | |
324 * output must be distinct to both inputs. The output is reduced degree and | |
325 * reduced coefficient. | |
326 */ | |
327 static void | |
328 fmul(limb *output, const limb *in, const limb *in2) { | |
329 limb t[19]; | |
330 fproduct(t, in, in2); | |
331 freduce_degree(t); | |
332 freduce_coefficients(t); | |
333 memcpy(output, t, sizeof(limb) * 10); | |
334 } | |
335 | |
336 static void fsquare_inner(limb *output, const limb *in) { | |
337 output[0] = ((limb) ((s32) in[0])) * ((s32) in[0]); | |
338 output[1] = 2 * ((limb) ((s32) in[0])) * ((s32) in[1]); | |
339 output[2] = 2 * (((limb) ((s32) in[1])) * ((s32) in[1]) + | |
340 ((limb) ((s32) in[0])) * ((s32) in[2])); | |
341 output[3] = 2 * (((limb) ((s32) in[1])) * ((s32) in[2]) + | |
342 ((limb) ((s32) in[0])) * ((s32) in[3])); | |
343 output[4] = ((limb) ((s32) in[2])) * ((s32) in[2]) + | |
344 4 * ((limb) ((s32) in[1])) * ((s32) in[3]) + | |
345 2 * ((limb) ((s32) in[0])) * ((s32) in[4]); | |
346 output[5] = 2 * (((limb) ((s32) in[2])) * ((s32) in[3]) + | |
347 ((limb) ((s32) in[1])) * ((s32) in[4]) + | |
348 ((limb) ((s32) in[0])) * ((s32) in[5])); | |
349 output[6] = 2 * (((limb) ((s32) in[3])) * ((s32) in[3]) + | |
350 ((limb) ((s32) in[2])) * ((s32) in[4]) + | |
351 ((limb) ((s32) in[0])) * ((s32) in[6]) + | |
352 2 * ((limb) ((s32) in[1])) * ((s32) in[5])); | |
353 output[7] = 2 * (((limb) ((s32) in[3])) * ((s32) in[4]) + | |
354 ((limb) ((s32) in[2])) * ((s32) in[5]) + | |
355 ((limb) ((s32) in[1])) * ((s32) in[6]) + | |
356 ((limb) ((s32) in[0])) * ((s32) in[7])); | |
357 output[8] = ((limb) ((s32) in[4])) * ((s32) in[4]) + | |
358 2 * (((limb) ((s32) in[2])) * ((s32) in[6]) + | |
359 ((limb) ((s32) in[0])) * ((s32) in[8]) + | |
360 2 * (((limb) ((s32) in[1])) * ((s32) in[7]) + | |
361 ((limb) ((s32) in[3])) * ((s32) in[5]))); | |
362 output[9] = 2 * (((limb) ((s32) in[4])) * ((s32) in[5]) + | |
363 ((limb) ((s32) in[3])) * ((s32) in[6]) + | |
364 ((limb) ((s32) in[2])) * ((s32) in[7]) + | |
365 ((limb) ((s32) in[1])) * ((s32) in[8]) + | |
366 ((limb) ((s32) in[0])) * ((s32) in[9])); | |
367 output[10] = 2 * (((limb) ((s32) in[5])) * ((s32) in[5]) + | |
368 ((limb) ((s32) in[4])) * ((s32) in[6]) + | |
369 ((limb) ((s32) in[2])) * ((s32) in[8]) + | |
370 2 * (((limb) ((s32) in[3])) * ((s32) in[7]) + | |
371 ((limb) ((s32) in[1])) * ((s32) in[9]))); | |
372 output[11] = 2 * (((limb) ((s32) in[5])) * ((s32) in[6]) + | |
373 ((limb) ((s32) in[4])) * ((s32) in[7]) + | |
374 ((limb) ((s32) in[3])) * ((s32) in[8]) + | |
375 ((limb) ((s32) in[2])) * ((s32) in[9])); | |
376 output[12] = ((limb) ((s32) in[6])) * ((s32) in[6]) + | |
377 2 * (((limb) ((s32) in[4])) * ((s32) in[8]) + | |
378 2 * (((limb) ((s32) in[5])) * ((s32) in[7]) + | |
379 ((limb) ((s32) in[3])) * ((s32) in[9]))); | |
380 output[13] = 2 * (((limb) ((s32) in[6])) * ((s32) in[7]) + | |
381 ((limb) ((s32) in[5])) * ((s32) in[8]) + | |
382 ((limb) ((s32) in[4])) * ((s32) in[9])); | |
383 output[14] = 2 * (((limb) ((s32) in[7])) * ((s32) in[7]) + | |
384 ((limb) ((s32) in[6])) * ((s32) in[8]) + | |
385 2 * ((limb) ((s32) in[5])) * ((s32) in[9])); | |
386 output[15] = 2 * (((limb) ((s32) in[7])) * ((s32) in[8]) + | |
387 ((limb) ((s32) in[6])) * ((s32) in[9])); | |
388 output[16] = ((limb) ((s32) in[8])) * ((s32) in[8]) + | |
389 4 * ((limb) ((s32) in[7])) * ((s32) in[9]); | |
390 output[17] = 2 * ((limb) ((s32) in[8])) * ((s32) in[9]); | |
391 output[18] = 2 * ((limb) ((s32) in[9])) * ((s32) in[9]); | |
392 } | |
393 | |
394 static void | |
395 fsquare(limb *output, const limb *in) { | |
396 limb t[19]; | |
397 fsquare_inner(t, in); | |
398 freduce_degree(t); | |
399 freduce_coefficients(t); | |
400 memcpy(output, t, sizeof(limb) * 10); | |
401 } | |
402 | |
403 /* Take a little-endian, 32-byte number and expand it into polynomial form */ | |
404 static void | |
405 fexpand(limb *output, const u8 *input) { | |
406 #define F(n,start,shift,mask) \ | |
407 output[n] = ((((limb) input[start + 0]) | \ | |
408 ((limb) input[start + 1]) << 8 | \ | |
409 ((limb) input[start + 2]) << 16 | \ | |
410 ((limb) input[start + 3]) << 24) >> shift) & mask; | |
411 F(0, 0, 0, 0x3ffffff); | |
412 F(1, 3, 2, 0x1ffffff); | |
413 F(2, 6, 3, 0x3ffffff); | |
414 F(3, 9, 5, 0x1ffffff); | |
415 F(4, 12, 6, 0x3ffffff); | |
416 F(5, 16, 0, 0x1ffffff); | |
417 F(6, 19, 1, 0x3ffffff); | |
418 F(7, 22, 3, 0x1ffffff); | |
419 F(8, 25, 4, 0x3ffffff); | |
420 F(9, 28, 6, 0x3ffffff); | |
421 #undef F | |
422 } | |
423 | |
424 #if (-32 >> 1) != -16 | |
425 #error "This code only works when >> does sign-extension on negative numbers" | |
426 #endif | |
427 | |
428 /* Take a fully reduced polynomial form number and contract it into a | |
429 * little-endian, 32-byte array | |
430 */ | |
431 static void | |
432 fcontract(u8 *output, limb *input) { | |
433 int i; | |
434 int j; | |
435 | |
436 for (j = 0; j < 2; ++j) { | |
437 for (i = 0; i < 9; ++i) { | |
438 if ((i & 1) == 1) { | |
439 /* This calculation is a time-invariant way to make input[i] positive | |
440 by borrowing from the next-larger limb. | |
441 */ | |
442 const s32 mask = (s32)(input[i]) >> 31; | |
443 const s32 carry = -(((s32)(input[i]) & mask) >> 25); | |
444 input[i] = (s32)(input[i]) + (carry << 25); | |
445 input[i+1] = (s32)(input[i+1]) - carry; | |
446 } else { | |
447 const s32 mask = (s32)(input[i]) >> 31; | |
448 const s32 carry = -(((s32)(input[i]) & mask) >> 26); | |
449 input[i] = (s32)(input[i]) + (carry << 26); | |
450 input[i+1] = (s32)(input[i+1]) - carry; | |
451 } | |
452 } | |
453 { | |
454 const s32 mask = (s32)(input[9]) >> 31; | |
455 const s32 carry = -(((s32)(input[9]) & mask) >> 25); | |
456 input[9] = (s32)(input[9]) + (carry << 25); | |
457 input[0] = (s32)(input[0]) - (carry * 19); | |
458 } | |
459 } | |
460 | |
461 /* The first borrow-propagation pass above ended with every limb | |
462 except (possibly) input[0] non-negative. | |
463 | |
464 Since each input limb except input[0] is decreased by at most 1 | |
465 by a borrow-propagation pass, the second borrow-propagation pass | |
466 could only have wrapped around to decrease input[0] again if the | |
467 first pass left input[0] negative *and* input[1] through input[9] | |
468 were all zero. In that case, input[1] is now 2^25 - 1, and this | |
469 last borrow-propagation step will leave input[1] non-negative. | |
470 */ | |
471 { | |
472 const s32 mask = (s32)(input[0]) >> 31; | |
473 const s32 carry = -(((s32)(input[0]) & mask) >> 26); | |
474 input[0] = (s32)(input[0]) + (carry << 26); | |
475 input[1] = (s32)(input[1]) - carry; | |
476 } | |
477 | |
478 /* Both passes through the above loop, plus the last 0-to-1 step, are | |
479 necessary: if input[9] is -1 and input[0] through input[8] are 0, | |
480 negative values will remain in the array until the end. | |
481 */ | |
482 | |
483 input[1] <<= 2; | |
484 input[2] <<= 3; | |
485 input[3] <<= 5; | |
486 input[4] <<= 6; | |
487 input[6] <<= 1; | |
488 input[7] <<= 3; | |
489 input[8] <<= 4; | |
490 input[9] <<= 6; | |
491 #define F(i, s) \ | |
492 output[s+0] |= input[i] & 0xff; \ | |
493 output[s+1] = (input[i] >> 8) & 0xff; \ | |
494 output[s+2] = (input[i] >> 16) & 0xff; \ | |
495 output[s+3] = (input[i] >> 24) & 0xff; | |
496 output[0] = 0; | |
497 output[16] = 0; | |
498 F(0,0); | |
499 F(1,3); | |
500 F(2,6); | |
501 F(3,9); | |
502 F(4,12); | |
503 F(5,16); | |
504 F(6,19); | |
505 F(7,22); | |
506 F(8,25); | |
507 F(9,28); | |
508 #undef F | |
509 } | |
510 | |
511 /* Input: Q, Q', Q-Q' | |
512 * Output: 2Q, Q+Q' | |
513 * | |
514 * x2 z3: long form | |
515 * x3 z3: long form | |
516 * x z: short form, destroyed | |
517 * xprime zprime: short form, destroyed | |
518 * qmqp: short form, preserved | |
519 */ | |
520 static void fmonty(limb *x2, limb *z2, /* output 2Q */ | |
521 limb *x3, limb *z3, /* output Q + Q' */ | |
522 limb *x, limb *z, /* input Q */ | |
523 limb *xprime, limb *zprime, /* input Q' */ | |
524 const limb *qmqp /* input Q - Q' */) { | |
525 limb origx[10], origxprime[10], zzz[19], xx[19], zz[19], xxprime[19], | |
526 zzprime[19], zzzprime[19], xxxprime[19]; | |
527 | |
528 memcpy(origx, x, 10 * sizeof(limb)); | |
529 fsum(x, z); | |
1038
d3925ed45a85
Fix for old compilers, variable declarations at beginning of functions
Thorsten Horstmann <thorsten.horstmann@web.de>
parents:
848
diff
changeset
|
530 fdifference(z, origx); /* does x - z */ |
848 | 531 |
532 memcpy(origxprime, xprime, sizeof(limb) * 10); | |
533 fsum(xprime, zprime); | |
534 fdifference(zprime, origxprime); | |
535 fproduct(xxprime, xprime, z); | |
536 fproduct(zzprime, x, zprime); | |
537 freduce_degree(xxprime); | |
538 freduce_coefficients(xxprime); | |
539 freduce_degree(zzprime); | |
540 freduce_coefficients(zzprime); | |
541 memcpy(origxprime, xxprime, sizeof(limb) * 10); | |
542 fsum(xxprime, zzprime); | |
543 fdifference(zzprime, origxprime); | |
544 fsquare(xxxprime, xxprime); | |
545 fsquare(zzzprime, zzprime); | |
546 fproduct(zzprime, zzzprime, qmqp); | |
547 freduce_degree(zzprime); | |
548 freduce_coefficients(zzprime); | |
549 memcpy(x3, xxxprime, sizeof(limb) * 10); | |
550 memcpy(z3, zzprime, sizeof(limb) * 10); | |
551 | |
552 fsquare(xx, x); | |
553 fsquare(zz, z); | |
554 fproduct(x2, xx, zz); | |
555 freduce_degree(x2); | |
556 freduce_coefficients(x2); | |
1038
d3925ed45a85
Fix for old compilers, variable declarations at beginning of functions
Thorsten Horstmann <thorsten.horstmann@web.de>
parents:
848
diff
changeset
|
557 fdifference(zz, xx); /* does zz = xx - zz */ |
848 | 558 memset(zzz + 10, 0, sizeof(limb) * 9); |
559 fscalar_product(zzz, zz, 121665); | |
560 /* No need to call freduce_degree here: | |
561 fscalar_product doesn't increase the degree of its input. */ | |
562 freduce_coefficients(zzz); | |
563 fsum(zzz, xx); | |
564 fproduct(z2, zz, zzz); | |
565 freduce_degree(z2); | |
566 freduce_coefficients(z2); | |
567 } | |
568 | |
569 /* Conditionally swap two reduced-form limb arrays if 'iswap' is 1, but leave | |
570 * them unchanged if 'iswap' is 0. Runs in data-invariant time to avoid | |
571 * side-channel attacks. | |
572 * | |
573 * NOTE that this function requires that 'iswap' be 1 or 0; other values give | |
574 * wrong results. Also, the two limb arrays must be in reduced-coefficient, | |
575 * reduced-degree form: the values in a[10..19] or b[10..19] aren't swapped, | |
576 * and all all values in a[0..9],b[0..9] must have magnitude less than | |
577 * INT32_MAX. | |
578 */ | |
579 static void | |
580 swap_conditional(limb a[19], limb b[19], limb iswap) { | |
581 unsigned i; | |
582 const s32 swap = (s32) -iswap; | |
583 | |
584 for (i = 0; i < 10; ++i) { | |
585 const s32 x = swap & ( ((s32)a[i]) ^ ((s32)b[i]) ); | |
586 a[i] = ((s32)a[i]) ^ x; | |
587 b[i] = ((s32)b[i]) ^ x; | |
588 } | |
589 } | |
590 | |
591 /* Calculates nQ where Q is the x-coordinate of a point on the curve | |
592 * | |
593 * resultx/resultz: the x coordinate of the resulting curve point (short form) | |
594 * n: a little endian, 32-byte number | |
595 * q: a point of the curve (short form) | |
596 */ | |
597 static void | |
598 cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) { | |
599 limb a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0}; | |
600 limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t; | |
601 limb e[19] = {0}, f[19] = {1}, g[19] = {0}, h[19] = {1}; | |
602 limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h; | |
603 | |
604 unsigned i, j; | |
605 | |
606 memcpy(nqpqx, q, sizeof(limb) * 10); | |
607 | |
608 for (i = 0; i < 32; ++i) { | |
609 u8 byte = n[31 - i]; | |
610 for (j = 0; j < 8; ++j) { | |
611 const limb bit = byte >> 7; | |
612 | |
613 swap_conditional(nqx, nqpqx, bit); | |
614 swap_conditional(nqz, nqpqz, bit); | |
615 fmonty(nqx2, nqz2, | |
616 nqpqx2, nqpqz2, | |
617 nqx, nqz, | |
618 nqpqx, nqpqz, | |
619 q); | |
620 swap_conditional(nqx2, nqpqx2, bit); | |
621 swap_conditional(nqz2, nqpqz2, bit); | |
622 | |
623 t = nqx; | |
624 nqx = nqx2; | |
625 nqx2 = t; | |
626 t = nqz; | |
627 nqz = nqz2; | |
628 nqz2 = t; | |
629 t = nqpqx; | |
630 nqpqx = nqpqx2; | |
631 nqpqx2 = t; | |
632 t = nqpqz; | |
633 nqpqz = nqpqz2; | |
634 nqpqz2 = t; | |
635 | |
636 byte <<= 1; | |
637 } | |
638 } | |
639 | |
640 memcpy(resultx, nqx, sizeof(limb) * 10); | |
641 memcpy(resultz, nqz, sizeof(limb) * 10); | |
642 } | |
643 | |
1038
d3925ed45a85
Fix for old compilers, variable declarations at beginning of functions
Thorsten Horstmann <thorsten.horstmann@web.de>
parents:
848
diff
changeset
|
644 /* ----------------------------------------------------------------------------- |
d3925ed45a85
Fix for old compilers, variable declarations at beginning of functions
Thorsten Horstmann <thorsten.horstmann@web.de>
parents:
848
diff
changeset
|
645 * Shamelessly copied from djb's code |
d3925ed45a85
Fix for old compilers, variable declarations at beginning of functions
Thorsten Horstmann <thorsten.horstmann@web.de>
parents:
848
diff
changeset
|
646 * ----------------------------------------------------------------------------- */ |
848 | 647 static void |
648 crecip(limb *out, const limb *z) { | |
649 limb z2[10]; | |
650 limb z9[10]; | |
651 limb z11[10]; | |
652 limb z2_5_0[10]; | |
653 limb z2_10_0[10]; | |
654 limb z2_20_0[10]; | |
655 limb z2_50_0[10]; | |
656 limb z2_100_0[10]; | |
657 limb t0[10]; | |
658 limb t1[10]; | |
659 int i; | |
660 | |
661 /* 2 */ fsquare(z2,z); | |
662 /* 4 */ fsquare(t1,z2); | |
663 /* 8 */ fsquare(t0,t1); | |
664 /* 9 */ fmul(z9,t0,z); | |
665 /* 11 */ fmul(z11,z9,z2); | |
666 /* 22 */ fsquare(t0,z11); | |
667 /* 2^5 - 2^0 = 31 */ fmul(z2_5_0,t0,z9); | |
668 | |
669 /* 2^6 - 2^1 */ fsquare(t0,z2_5_0); | |
670 /* 2^7 - 2^2 */ fsquare(t1,t0); | |
671 /* 2^8 - 2^3 */ fsquare(t0,t1); | |
672 /* 2^9 - 2^4 */ fsquare(t1,t0); | |
673 /* 2^10 - 2^5 */ fsquare(t0,t1); | |
674 /* 2^10 - 2^0 */ fmul(z2_10_0,t0,z2_5_0); | |
675 | |
676 /* 2^11 - 2^1 */ fsquare(t0,z2_10_0); | |
677 /* 2^12 - 2^2 */ fsquare(t1,t0); | |
678 /* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t0,t1); fsquare(t1,t0); } | |
679 /* 2^20 - 2^0 */ fmul(z2_20_0,t1,z2_10_0); | |
680 | |
681 /* 2^21 - 2^1 */ fsquare(t0,z2_20_0); | |
682 /* 2^22 - 2^2 */ fsquare(t1,t0); | |
683 /* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fsquare(t0,t1); fsquare(t1,t0); } | |
684 /* 2^40 - 2^0 */ fmul(t0,t1,z2_20_0); | |
685 | |
686 /* 2^41 - 2^1 */ fsquare(t1,t0); | |
687 /* 2^42 - 2^2 */ fsquare(t0,t1); | |
688 /* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t1,t0); fsquare(t0,t1); } | |
689 /* 2^50 - 2^0 */ fmul(z2_50_0,t0,z2_10_0); | |
690 | |
691 /* 2^51 - 2^1 */ fsquare(t0,z2_50_0); | |
692 /* 2^52 - 2^2 */ fsquare(t1,t0); | |
693 /* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); } | |
694 /* 2^100 - 2^0 */ fmul(z2_100_0,t1,z2_50_0); | |
695 | |
696 /* 2^101 - 2^1 */ fsquare(t1,z2_100_0); | |
697 /* 2^102 - 2^2 */ fsquare(t0,t1); | |
698 /* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fsquare(t1,t0); fsquare(t0,t1); } | |
699 /* 2^200 - 2^0 */ fmul(t1,t0,z2_100_0); | |
700 | |
701 /* 2^201 - 2^1 */ fsquare(t0,t1); | |
702 /* 2^202 - 2^2 */ fsquare(t1,t0); | |
703 /* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); } | |
704 /* 2^250 - 2^0 */ fmul(t0,t1,z2_50_0); | |
705 | |
706 /* 2^251 - 2^1 */ fsquare(t1,t0); | |
707 /* 2^252 - 2^2 */ fsquare(t0,t1); | |
708 /* 2^253 - 2^3 */ fsquare(t1,t0); | |
709 /* 2^254 - 2^4 */ fsquare(t0,t1); | |
710 /* 2^255 - 2^5 */ fsquare(t1,t0); | |
711 /* 2^255 - 21 */ fmul(out,t1,z11); | |
712 } | |
713 | |
714 int curve25519_donna(u8 *, const u8 *, const u8 *); | |
715 | |
716 int | |
717 curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint) { | |
718 limb bp[10], x[10], z[11], zmone[10]; | |
719 uint8_t e[32]; | |
720 int i; | |
721 | |
722 for (i = 0; i < 32; ++i) e[i] = secret[i]; | |
723 e[0] &= 248; | |
724 e[31] &= 127; | |
725 e[31] |= 64; | |
726 | |
727 fexpand(bp, basepoint); | |
728 cmult(x, z, e, bp); | |
729 crecip(zmone, z); | |
730 fmul(z, x, zmone); | |
731 freduce_coefficients(z); | |
732 fcontract(mypublic, z); | |
733 return 0; | |
734 } |