142
|
1 #include <tommath.h> |
|
2 #ifdef BN_MP_PRIME_NEXT_PRIME_C |
2
|
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
4 * |
|
5 * LibTomMath is a library that provides multiple-precision |
|
6 * integer arithmetic as well as number theoretic functionality. |
|
7 * |
|
8 * The library was designed directly after the MPI library by |
|
9 * Michael Fromberger but has been written from scratch with |
|
10 * additional optimizations in place. |
|
11 * |
|
12 * The library is free for all purposes without any express |
|
13 * guarantee it works. |
|
14 * |
|
15 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
16 */ |
|
17 |
|
18 /* finds the next prime after the number "a" using "t" trials |
|
19 * of Miller-Rabin. |
|
20 * |
|
21 * bbs_style = 1 means the prime must be congruent to 3 mod 4 |
|
22 */ |
|
23 int mp_prime_next_prime(mp_int *a, int t, int bbs_style) |
|
24 { |
|
25 int err, res, x, y; |
|
26 mp_digit res_tab[PRIME_SIZE], step, kstep; |
|
27 mp_int b; |
|
28 |
|
29 /* ensure t is valid */ |
|
30 if (t <= 0 || t > PRIME_SIZE) { |
|
31 return MP_VAL; |
|
32 } |
|
33 |
|
34 /* force positive */ |
|
35 a->sign = MP_ZPOS; |
|
36 |
|
37 /* simple algo if a is less than the largest prime in the table */ |
|
38 if (mp_cmp_d(a, __prime_tab[PRIME_SIZE-1]) == MP_LT) { |
|
39 /* find which prime it is bigger than */ |
|
40 for (x = PRIME_SIZE - 2; x >= 0; x--) { |
|
41 if (mp_cmp_d(a, __prime_tab[x]) != MP_LT) { |
|
42 if (bbs_style == 1) { |
|
43 /* ok we found a prime smaller or |
|
44 * equal [so the next is larger] |
|
45 * |
|
46 * however, the prime must be |
|
47 * congruent to 3 mod 4 |
|
48 */ |
|
49 if ((__prime_tab[x + 1] & 3) != 3) { |
|
50 /* scan upwards for a prime congruent to 3 mod 4 */ |
|
51 for (y = x + 1; y < PRIME_SIZE; y++) { |
|
52 if ((__prime_tab[y] & 3) == 3) { |
|
53 mp_set(a, __prime_tab[y]); |
|
54 return MP_OKAY; |
|
55 } |
|
56 } |
|
57 } |
|
58 } else { |
|
59 mp_set(a, __prime_tab[x + 1]); |
|
60 return MP_OKAY; |
|
61 } |
|
62 } |
|
63 } |
|
64 /* at this point a maybe 1 */ |
|
65 if (mp_cmp_d(a, 1) == MP_EQ) { |
|
66 mp_set(a, 2); |
|
67 return MP_OKAY; |
|
68 } |
|
69 /* fall through to the sieve */ |
|
70 } |
|
71 |
|
72 /* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */ |
|
73 if (bbs_style == 1) { |
|
74 kstep = 4; |
|
75 } else { |
|
76 kstep = 2; |
|
77 } |
|
78 |
|
79 /* at this point we will use a combination of a sieve and Miller-Rabin */ |
|
80 |
|
81 if (bbs_style == 1) { |
|
82 /* if a mod 4 != 3 subtract the correct value to make it so */ |
|
83 if ((a->dp[0] & 3) != 3) { |
|
84 if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; }; |
|
85 } |
|
86 } else { |
|
87 if (mp_iseven(a) == 1) { |
|
88 /* force odd */ |
|
89 if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { |
|
90 return err; |
|
91 } |
|
92 } |
|
93 } |
|
94 |
|
95 /* generate the restable */ |
|
96 for (x = 1; x < PRIME_SIZE; x++) { |
|
97 if ((err = mp_mod_d(a, __prime_tab[x], res_tab + x)) != MP_OKAY) { |
|
98 return err; |
|
99 } |
|
100 } |
|
101 |
|
102 /* init temp used for Miller-Rabin Testing */ |
|
103 if ((err = mp_init(&b)) != MP_OKAY) { |
|
104 return err; |
|
105 } |
|
106 |
|
107 for (;;) { |
|
108 /* skip to the next non-trivially divisible candidate */ |
|
109 step = 0; |
|
110 do { |
|
111 /* y == 1 if any residue was zero [e.g. cannot be prime] */ |
|
112 y = 0; |
|
113 |
|
114 /* increase step to next candidate */ |
|
115 step += kstep; |
|
116 |
|
117 /* compute the new residue without using division */ |
|
118 for (x = 1; x < PRIME_SIZE; x++) { |
|
119 /* add the step to each residue */ |
|
120 res_tab[x] += kstep; |
|
121 |
|
122 /* subtract the modulus [instead of using division] */ |
|
123 if (res_tab[x] >= __prime_tab[x]) { |
|
124 res_tab[x] -= __prime_tab[x]; |
|
125 } |
|
126 |
|
127 /* set flag if zero */ |
|
128 if (res_tab[x] == 0) { |
|
129 y = 1; |
|
130 } |
|
131 } |
|
132 } while (y == 1 && step < ((((mp_digit)1)<<DIGIT_BIT) - kstep)); |
|
133 |
|
134 /* add the step */ |
|
135 if ((err = mp_add_d(a, step, a)) != MP_OKAY) { |
|
136 goto __ERR; |
|
137 } |
|
138 |
|
139 /* if didn't pass sieve and step == MAX then skip test */ |
|
140 if (y == 1 && step >= ((((mp_digit)1)<<DIGIT_BIT) - kstep)) { |
|
141 continue; |
|
142 } |
|
143 |
|
144 /* is this prime? */ |
|
145 for (x = 0; x < t; x++) { |
|
146 mp_set(&b, __prime_tab[t]); |
|
147 if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { |
|
148 goto __ERR; |
|
149 } |
|
150 if (res == MP_NO) { |
|
151 break; |
|
152 } |
|
153 } |
|
154 |
|
155 if (res == MP_YES) { |
|
156 break; |
|
157 } |
|
158 } |
|
159 |
|
160 err = MP_OKAY; |
|
161 __ERR: |
|
162 mp_clear(&b); |
|
163 return err; |
|
164 } |
|
165 |
142
|
166 #endif |