1
|
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
2 * |
|
3 * LibTomMath is a library that provides multiple-precision |
|
4 * integer arithmetic as well as number theoretic functionality. |
|
5 * |
|
6 * The library was designed directly after the MPI library by |
|
7 * Michael Fromberger but has been written from scratch with |
|
8 * additional optimizations in place. |
|
9 * |
|
10 * The library is free for all purposes without any express |
|
11 * guarantee it works. |
|
12 * |
|
13 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
14 */ |
|
15 #include <tommath.h> |
|
16 |
|
17 /* this table gives the # of rabin miller trials for a prob of failure lower than 2^-96 */ |
|
18 static const struct { |
|
19 int k, t; |
|
20 } sizes[] = { |
|
21 { 128, 28 }, |
|
22 { 256, 16 }, |
|
23 { 384, 10 }, |
|
24 { 512, 7 }, |
|
25 { 640, 6 }, |
|
26 { 768, 5 }, |
|
27 { 896, 4 }, |
|
28 { 1024, 4 }, |
|
29 { 1152, 3 }, |
|
30 { 1280, 3 }, |
|
31 { 1408, 3 }, |
|
32 { 1536, 3 }, |
|
33 { 1664, 3 }, |
|
34 { 1792, 2 } }; |
|
35 |
|
36 /* returns # of RM trials required for a given bit size */ |
|
37 int mp_prime_rabin_miller_trials(int size) |
|
38 { |
|
39 int x; |
|
40 |
|
41 for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) { |
|
42 if (sizes[x].k == size) { |
|
43 return sizes[x].t; |
|
44 } else if (sizes[x].k > size) { |
|
45 return (x == 0) ? sizes[0].t : sizes[x - 1].t; |
|
46 } |
|
47 } |
|
48 return 1; |
|
49 } |
|
50 |
|
51 |