1
|
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
2 * |
|
3 * LibTomMath is a library that provides multiple-precision |
|
4 * integer arithmetic as well as number theoretic functionality. |
|
5 * |
|
6 * The library was designed directly after the MPI library by |
|
7 * Michael Fromberger but has been written from scratch with |
|
8 * additional optimizations in place. |
|
9 * |
|
10 * The library is free for all purposes without any express |
|
11 * guarantee it works. |
|
12 * |
|
13 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
14 */ |
|
15 #ifndef BN_H_ |
|
16 #define BN_H_ |
|
17 |
|
18 #include <stdio.h> |
|
19 #include <string.h> |
|
20 #include <stdlib.h> |
|
21 #include <ctype.h> |
|
22 #include <limits.h> |
|
23 |
|
24 #define NO_LTM_TOOM 1 |
|
25 #define NO_LTM_KARATSUBA 1 |
|
26 |
|
27 #undef MIN |
|
28 #define MIN(x,y) ((x)<(y)?(x):(y)) |
|
29 #undef MAX |
|
30 #define MAX(x,y) ((x)>(y)?(x):(y)) |
|
31 |
|
32 #ifdef __cplusplus |
|
33 extern "C" { |
|
34 |
|
35 /* C++ compilers don't like assigning void * to mp_digit * */ |
|
36 #define OPT_CAST(x) (x *) |
|
37 |
|
38 #else |
|
39 |
|
40 /* C on the other hand doesn't care */ |
|
41 #define OPT_CAST(x) |
|
42 |
|
43 #endif |
|
44 |
|
45 /* some default configurations. |
|
46 * |
|
47 * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits |
|
48 * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits |
|
49 * |
|
50 * At the very least a mp_digit must be able to hold 7 bits |
|
51 * [any size beyond that is ok provided it doesn't overflow the data type] |
|
52 */ |
|
53 #ifdef MP_8BIT |
|
54 typedef unsigned char mp_digit; |
|
55 typedef unsigned short mp_word; |
|
56 #elif defined(MP_16BIT) |
|
57 typedef unsigned short mp_digit; |
|
58 typedef unsigned long mp_word; |
|
59 #elif defined(MP_64BIT) |
|
60 /* for GCC only on supported platforms */ |
|
61 #ifndef CRYPT |
|
62 typedef unsigned long long ulong64; |
|
63 typedef signed long long long64; |
|
64 #endif |
|
65 |
|
66 typedef ulong64 mp_digit; |
|
67 typedef unsigned long mp_word __attribute__ ((mode(TI))); |
|
68 |
|
69 #define DIGIT_BIT 60 |
|
70 #else |
|
71 /* this is the default case, 28-bit digits */ |
|
72 |
|
73 /* this is to make porting into LibTomCrypt easier :-) */ |
|
74 #ifndef CRYPT |
|
75 #if defined(_MSC_VER) || defined(__BORLANDC__) |
|
76 typedef unsigned __int64 ulong64; |
|
77 typedef signed __int64 long64; |
|
78 #else |
|
79 typedef unsigned long long ulong64; |
|
80 typedef signed long long long64; |
|
81 #endif |
|
82 #endif |
|
83 |
|
84 typedef unsigned long mp_digit; |
|
85 typedef ulong64 mp_word; |
|
86 |
|
87 #ifdef MP_31BIT |
|
88 /* this is an extension that uses 31-bit digits */ |
|
89 #define DIGIT_BIT 31 |
|
90 #else |
|
91 /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */ |
|
92 #define DIGIT_BIT 28 |
|
93 #define MP_28BIT |
|
94 #endif |
|
95 #endif |
|
96 |
|
97 /* define heap macros */ |
|
98 #ifndef CRYPT |
|
99 /* default to libc stuff */ |
|
100 #ifndef XMALLOC |
|
101 #define XMALLOC malloc |
|
102 #define XFREE free |
|
103 #define XREALLOC realloc |
|
104 #define XCALLOC calloc |
|
105 #else |
|
106 /* prototypes for our heap functions */ |
|
107 extern void *XMALLOC(size_t n); |
|
108 extern void *REALLOC(void *p, size_t n); |
|
109 extern void *XCALLOC(size_t n, size_t s); |
|
110 extern void XFREE(void *p); |
|
111 #endif |
|
112 #endif |
|
113 |
|
114 |
|
115 /* otherwise the bits per digit is calculated automatically from the size of a mp_digit */ |
|
116 #ifndef DIGIT_BIT |
|
117 #define DIGIT_BIT ((int)((CHAR_BIT * sizeof(mp_digit) - 1))) /* bits per digit */ |
|
118 #endif |
|
119 |
|
120 #define MP_DIGIT_BIT DIGIT_BIT |
|
121 #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1)) |
|
122 #define MP_DIGIT_MAX MP_MASK |
|
123 |
|
124 /* equalities */ |
|
125 #define MP_LT -1 /* less than */ |
|
126 #define MP_EQ 0 /* equal to */ |
|
127 #define MP_GT 1 /* greater than */ |
|
128 |
|
129 #define MP_ZPOS 0 /* positive integer */ |
|
130 #define MP_NEG 1 /* negative */ |
|
131 |
|
132 #define MP_OKAY 0 /* ok result */ |
|
133 #define MP_MEM -2 /* out of mem */ |
|
134 #define MP_VAL -3 /* invalid input */ |
|
135 #define MP_RANGE MP_VAL |
|
136 |
|
137 #define MP_YES 1 /* yes response */ |
|
138 #define MP_NO 0 /* no response */ |
|
139 |
|
140 /* Primality generation flags */ |
|
141 #define LTM_PRIME_BBS 0x0001 /* BBS style prime */ |
|
142 #define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */ |
|
143 #define LTM_PRIME_2MSB_OFF 0x0004 /* force 2nd MSB to 0 */ |
|
144 #define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */ |
|
145 |
|
146 typedef int mp_err; |
|
147 |
|
148 /* you'll have to tune these... */ |
|
149 extern int KARATSUBA_MUL_CUTOFF, |
|
150 KARATSUBA_SQR_CUTOFF, |
|
151 TOOM_MUL_CUTOFF, |
|
152 TOOM_SQR_CUTOFF; |
|
153 |
|
154 /* define this to use lower memory usage routines (exptmods mostly) */ |
|
155 /* #define MP_LOW_MEM */ |
|
156 |
|
157 /* default precision */ |
|
158 #ifndef MP_PREC |
|
159 #ifdef MP_LOW_MEM |
|
160 #define MP_PREC 64 /* default digits of precision */ |
|
161 #else |
|
162 #define MP_PREC 8 /* default digits of precision */ |
|
163 #endif |
|
164 #endif |
|
165 |
|
166 /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ |
|
167 #define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1)) |
|
168 |
|
169 /* the infamous mp_int structure */ |
|
170 typedef struct { |
|
171 int used, alloc, sign; |
|
172 mp_digit *dp; |
|
173 } mp_int; |
|
174 |
|
175 /* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */ |
|
176 typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat); |
|
177 |
|
178 |
|
179 #define USED(m) ((m)->used) |
|
180 #define DIGIT(m,k) ((m)->dp[(k)]) |
|
181 #define SIGN(m) ((m)->sign) |
|
182 |
|
183 /* error code to char* string */ |
|
184 char *mp_error_to_string(int code); |
|
185 |
|
186 /* ---> init and deinit bignum functions <--- */ |
|
187 /* init a bignum */ |
|
188 int mp_init(mp_int *a); |
|
189 |
|
190 /* free a bignum */ |
|
191 void mp_clear(mp_int *a); |
|
192 |
|
193 /* init a null terminated series of arguments */ |
|
194 int mp_init_multi(mp_int *mp, ...); |
|
195 |
|
196 /* clear a null terminated series of arguments */ |
|
197 void mp_clear_multi(mp_int *mp, ...); |
|
198 |
|
199 /* exchange two ints */ |
|
200 void mp_exch(mp_int *a, mp_int *b); |
|
201 |
|
202 /* shrink ram required for a bignum */ |
|
203 int mp_shrink(mp_int *a); |
|
204 |
|
205 /* grow an int to a given size */ |
|
206 int mp_grow(mp_int *a, int size); |
|
207 |
|
208 /* init to a given number of digits */ |
|
209 int mp_init_size(mp_int *a, int size); |
|
210 |
|
211 /* ---> Basic Manipulations <--- */ |
|
212 #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) |
|
213 #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO) |
|
214 #define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO) |
|
215 |
|
216 /* set to zero */ |
|
217 void mp_zero(mp_int *a); |
|
218 |
|
219 /* set to a digit */ |
|
220 void mp_set(mp_int *a, mp_digit b); |
|
221 |
|
222 /* set a 32-bit const */ |
|
223 int mp_set_int(mp_int *a, unsigned long b); |
|
224 |
|
225 /* get a 32-bit value */ |
|
226 unsigned long mp_get_int(mp_int * a); |
|
227 |
|
228 /* initialize and set a digit */ |
|
229 int mp_init_set (mp_int * a, mp_digit b); |
|
230 |
|
231 /* initialize and set 32-bit value */ |
|
232 int mp_init_set_int (mp_int * a, unsigned long b); |
|
233 |
|
234 /* copy, b = a */ |
|
235 int mp_copy(mp_int *a, mp_int *b); |
|
236 |
|
237 /* inits and copies, a = b */ |
|
238 int mp_init_copy(mp_int *a, mp_int *b); |
|
239 |
|
240 /* trim unused digits */ |
|
241 void mp_clamp(mp_int *a); |
|
242 |
|
243 /* ---> digit manipulation <--- */ |
|
244 |
|
245 /* right shift by "b" digits */ |
|
246 void mp_rshd(mp_int *a, int b); |
|
247 |
|
248 /* left shift by "b" digits */ |
|
249 int mp_lshd(mp_int *a, int b); |
|
250 |
|
251 /* c = a / 2**b */ |
|
252 int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d); |
|
253 |
|
254 /* b = a/2 */ |
|
255 int mp_div_2(mp_int *a, mp_int *b); |
|
256 |
|
257 /* c = a * 2**b */ |
|
258 int mp_mul_2d(mp_int *a, int b, mp_int *c); |
|
259 |
|
260 /* b = a*2 */ |
|
261 int mp_mul_2(mp_int *a, mp_int *b); |
|
262 |
|
263 /* c = a mod 2**d */ |
|
264 int mp_mod_2d(mp_int *a, int b, mp_int *c); |
|
265 |
|
266 /* computes a = 2**b */ |
|
267 int mp_2expt(mp_int *a, int b); |
|
268 |
|
269 /* Counts the number of lsbs which are zero before the first zero bit */ |
|
270 int mp_cnt_lsb(mp_int *a); |
|
271 |
|
272 /* I Love Earth! */ |
|
273 |
|
274 /* makes a pseudo-random int of a given size */ |
|
275 int mp_rand(mp_int *a, int digits); |
|
276 |
|
277 /* ---> binary operations <--- */ |
|
278 /* c = a XOR b */ |
|
279 int mp_xor(mp_int *a, mp_int *b, mp_int *c); |
|
280 |
|
281 /* c = a OR b */ |
|
282 int mp_or(mp_int *a, mp_int *b, mp_int *c); |
|
283 |
|
284 /* c = a AND b */ |
|
285 int mp_and(mp_int *a, mp_int *b, mp_int *c); |
|
286 |
|
287 /* ---> Basic arithmetic <--- */ |
|
288 |
|
289 /* b = -a */ |
|
290 int mp_neg(mp_int *a, mp_int *b); |
|
291 |
|
292 /* b = |a| */ |
|
293 int mp_abs(mp_int *a, mp_int *b); |
|
294 |
|
295 /* compare a to b */ |
|
296 int mp_cmp(mp_int *a, mp_int *b); |
|
297 |
|
298 /* compare |a| to |b| */ |
|
299 int mp_cmp_mag(mp_int *a, mp_int *b); |
|
300 |
|
301 /* c = a + b */ |
|
302 int mp_add(mp_int *a, mp_int *b, mp_int *c); |
|
303 |
|
304 /* c = a - b */ |
|
305 int mp_sub(mp_int *a, mp_int *b, mp_int *c); |
|
306 |
|
307 /* c = a * b */ |
|
308 int mp_mul(mp_int *a, mp_int *b, mp_int *c); |
|
309 |
|
310 /* b = a*a */ |
|
311 int mp_sqr(mp_int *a, mp_int *b); |
|
312 |
|
313 /* a/b => cb + d == a */ |
|
314 int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d); |
|
315 |
|
316 /* c = a mod b, 0 <= c < b */ |
|
317 int mp_mod(mp_int *a, mp_int *b, mp_int *c); |
|
318 |
|
319 /* ---> single digit functions <--- */ |
|
320 |
|
321 /* compare against a single digit */ |
|
322 int mp_cmp_d(mp_int *a, mp_digit b); |
|
323 |
|
324 /* c = a + b */ |
|
325 int mp_add_d(mp_int *a, mp_digit b, mp_int *c); |
|
326 |
|
327 /* c = a - b */ |
|
328 int mp_sub_d(mp_int *a, mp_digit b, mp_int *c); |
|
329 |
|
330 /* c = a * b */ |
|
331 int mp_mul_d(mp_int *a, mp_digit b, mp_int *c); |
|
332 |
|
333 /* a/b => cb + d == a */ |
|
334 int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d); |
|
335 |
|
336 /* a/3 => 3c + d == a */ |
|
337 int mp_div_3(mp_int *a, mp_int *c, mp_digit *d); |
|
338 |
|
339 /* c = a**b */ |
|
340 int mp_expt_d(mp_int *a, mp_digit b, mp_int *c); |
|
341 |
|
342 /* c = a mod b, 0 <= c < b */ |
|
343 int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c); |
|
344 |
|
345 /* ---> number theory <--- */ |
|
346 |
|
347 /* d = a + b (mod c) */ |
|
348 int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); |
|
349 |
|
350 /* d = a - b (mod c) */ |
|
351 int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); |
|
352 |
|
353 /* d = a * b (mod c) */ |
|
354 int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); |
|
355 |
|
356 /* c = a * a (mod b) */ |
|
357 int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c); |
|
358 |
|
359 /* c = 1/a (mod b) */ |
|
360 int mp_invmod(mp_int *a, mp_int *b, mp_int *c); |
|
361 |
|
362 /* c = (a, b) */ |
|
363 int mp_gcd(mp_int *a, mp_int *b, mp_int *c); |
|
364 |
|
365 /* produces value such that U1*a + U2*b = U3 */ |
|
366 int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3); |
|
367 |
|
368 /* c = [a, b] or (a*b)/(a, b) */ |
|
369 int mp_lcm(mp_int *a, mp_int *b, mp_int *c); |
|
370 |
|
371 /* finds one of the b'th root of a, such that |c|**b <= |a| |
|
372 * |
|
373 * returns error if a < 0 and b is even |
|
374 */ |
|
375 int mp_n_root(mp_int *a, mp_digit b, mp_int *c); |
|
376 |
|
377 /* special sqrt algo */ |
|
378 int mp_sqrt(mp_int *arg, mp_int *ret); |
|
379 |
|
380 /* is number a square? */ |
|
381 int mp_is_square(mp_int *arg, int *ret); |
|
382 |
|
383 /* computes the jacobi c = (a | n) (or Legendre if b is prime) */ |
|
384 int mp_jacobi(mp_int *a, mp_int *n, int *c); |
|
385 |
|
386 /* used to setup the Barrett reduction for a given modulus b */ |
|
387 int mp_reduce_setup(mp_int *a, mp_int *b); |
|
388 |
|
389 /* Barrett Reduction, computes a (mod b) with a precomputed value c |
|
390 * |
|
391 * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely |
|
392 * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code]. |
|
393 */ |
|
394 int mp_reduce(mp_int *a, mp_int *b, mp_int *c); |
|
395 |
|
396 /* setups the montgomery reduction */ |
|
397 int mp_montgomery_setup(mp_int *a, mp_digit *mp); |
|
398 |
|
399 /* computes a = B**n mod b without division or multiplication useful for |
|
400 * normalizing numbers in a Montgomery system. |
|
401 */ |
|
402 int mp_montgomery_calc_normalization(mp_int *a, mp_int *b); |
|
403 |
|
404 /* computes x/R == x (mod N) via Montgomery Reduction */ |
|
405 int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); |
|
406 |
|
407 /* returns 1 if a is a valid DR modulus */ |
|
408 int mp_dr_is_modulus(mp_int *a); |
|
409 |
|
410 /* sets the value of "d" required for mp_dr_reduce */ |
|
411 void mp_dr_setup(mp_int *a, mp_digit *d); |
|
412 |
|
413 /* reduces a modulo b using the Diminished Radix method */ |
|
414 int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp); |
|
415 |
|
416 /* returns true if a can be reduced with mp_reduce_2k */ |
|
417 int mp_reduce_is_2k(mp_int *a); |
|
418 |
|
419 /* determines k value for 2k reduction */ |
|
420 int mp_reduce_2k_setup(mp_int *a, mp_digit *d); |
|
421 |
|
422 /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ |
|
423 int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d); |
|
424 |
|
425 /* d = a**b (mod c) */ |
|
426 int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); |
|
427 |
|
428 /* ---> Primes <--- */ |
|
429 |
|
430 /* number of primes */ |
|
431 #ifdef MP_8BIT |
|
432 #define PRIME_SIZE 31 |
|
433 #else |
|
434 #define PRIME_SIZE 256 |
|
435 #endif |
|
436 |
|
437 /* table of first PRIME_SIZE primes */ |
|
438 extern const mp_digit __prime_tab[]; |
|
439 |
|
440 /* result=1 if a is divisible by one of the first PRIME_SIZE primes */ |
|
441 int mp_prime_is_divisible(mp_int *a, int *result); |
|
442 |
|
443 /* performs one Fermat test of "a" using base "b". |
|
444 * Sets result to 0 if composite or 1 if probable prime |
|
445 */ |
|
446 int mp_prime_fermat(mp_int *a, mp_int *b, int *result); |
|
447 |
|
448 /* performs one Miller-Rabin test of "a" using base "b". |
|
449 * Sets result to 0 if composite or 1 if probable prime |
|
450 */ |
|
451 int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result); |
|
452 |
|
453 /* This gives [for a given bit size] the number of trials required |
|
454 * such that Miller-Rabin gives a prob of failure lower than 2^-96 |
|
455 */ |
|
456 int mp_prime_rabin_miller_trials(int size); |
|
457 |
|
458 /* performs t rounds of Miller-Rabin on "a" using the first |
|
459 * t prime bases. Also performs an initial sieve of trial |
|
460 * division. Determines if "a" is prime with probability |
|
461 * of error no more than (1/4)**t. |
|
462 * |
|
463 * Sets result to 1 if probably prime, 0 otherwise |
|
464 */ |
|
465 int mp_prime_is_prime(mp_int *a, int t, int *result); |
|
466 |
|
467 /* finds the next prime after the number "a" using "t" trials |
|
468 * of Miller-Rabin. |
|
469 * |
|
470 * bbs_style = 1 means the prime must be congruent to 3 mod 4 |
|
471 */ |
|
472 int mp_prime_next_prime(mp_int *a, int t, int bbs_style); |
|
473 |
|
474 /* makes a truly random prime of a given size (bytes), |
|
475 * call with bbs = 1 if you want it to be congruent to 3 mod 4 |
|
476 * |
|
477 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can |
|
478 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself |
|
479 * so it can be NULL |
|
480 * |
|
481 * The prime generated will be larger than 2^(8*size). |
|
482 */ |
|
483 #define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat) |
|
484 |
|
485 /* makes a truly random prime of a given size (bits), |
|
486 * |
|
487 * Flags are as follows: |
|
488 * |
|
489 * LTM_PRIME_BBS - make prime congruent to 3 mod 4 |
|
490 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) |
|
491 * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero |
|
492 * LTM_PRIME_2MSB_ON - make the 2nd highest bit one |
|
493 * |
|
494 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can |
|
495 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself |
|
496 * so it can be NULL |
|
497 * |
|
498 */ |
|
499 int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat); |
|
500 |
|
501 /* ---> radix conversion <--- */ |
|
502 int mp_count_bits(mp_int *a); |
|
503 |
|
504 int mp_unsigned_bin_size(mp_int *a); |
|
505 int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c); |
|
506 int mp_to_unsigned_bin(mp_int *a, unsigned char *b); |
|
507 |
|
508 int mp_signed_bin_size(mp_int *a); |
|
509 int mp_read_signed_bin(mp_int *a, unsigned char *b, int c); |
|
510 int mp_to_signed_bin(mp_int *a, unsigned char *b); |
|
511 |
|
512 int mp_read_radix(mp_int *a, char *str, int radix); |
|
513 int mp_toradix(mp_int *a, char *str, int radix); |
|
514 int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen); |
|
515 int mp_radix_size(mp_int *a, int radix, int *size); |
|
516 |
|
517 int mp_fread(mp_int *a, int radix, FILE *stream); |
|
518 int mp_fwrite(mp_int *a, int radix, FILE *stream); |
|
519 |
|
520 #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len)) |
|
521 #define mp_raw_size(mp) mp_signed_bin_size(mp) |
|
522 #define mp_toraw(mp, str) mp_to_signed_bin((mp), (str)) |
|
523 #define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len)) |
|
524 #define mp_mag_size(mp) mp_unsigned_bin_size(mp) |
|
525 #define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str)) |
|
526 |
|
527 #define mp_tobinary(M, S) mp_toradix((M), (S), 2) |
|
528 #define mp_tooctal(M, S) mp_toradix((M), (S), 8) |
|
529 #define mp_todecimal(M, S) mp_toradix((M), (S), 10) |
|
530 #define mp_tohex(M, S) mp_toradix((M), (S), 16) |
|
531 |
|
532 /* lowlevel functions, do not call! */ |
|
533 int s_mp_add(mp_int *a, mp_int *b, mp_int *c); |
|
534 int s_mp_sub(mp_int *a, mp_int *b, mp_int *c); |
|
535 #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1) |
|
536 int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); |
|
537 int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); |
|
538 int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); |
|
539 int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); |
|
540 int fast_s_mp_sqr(mp_int *a, mp_int *b); |
|
541 int s_mp_sqr(mp_int *a, mp_int *b); |
|
542 int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c); |
|
543 int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c); |
|
544 int mp_karatsuba_sqr(mp_int *a, mp_int *b); |
|
545 int mp_toom_sqr(mp_int *a, mp_int *b); |
|
546 int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c); |
|
547 int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); |
|
548 int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode); |
|
549 int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y); |
|
550 void bn_reverse(unsigned char *s, int len); |
|
551 |
|
552 extern const char *mp_s_rmap; |
|
553 |
|
554 #ifdef __cplusplus |
|
555 } |
|
556 #endif |
|
557 |
|
558 #endif |
|
559 |