142
|
1 #include <tommath.h> |
|
2 #ifdef BN_MP_GCD_C |
2
|
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
4 * |
|
5 * LibTomMath is a library that provides multiple-precision |
|
6 * integer arithmetic as well as number theoretic functionality. |
|
7 * |
|
8 * The library was designed directly after the MPI library by |
|
9 * Michael Fromberger but has been written from scratch with |
|
10 * additional optimizations in place. |
|
11 * |
|
12 * The library is free for all purposes without any express |
|
13 * guarantee it works. |
|
14 * |
|
15 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
16 */ |
|
17 |
|
18 /* Greatest Common Divisor using the binary method */ |
|
19 int mp_gcd (mp_int * a, mp_int * b, mp_int * c) |
|
20 { |
|
21 mp_int u, v; |
|
22 int k, u_lsb, v_lsb, res; |
|
23 |
|
24 /* either zero than gcd is the largest */ |
|
25 if (mp_iszero (a) == 1 && mp_iszero (b) == 0) { |
|
26 return mp_abs (b, c); |
|
27 } |
|
28 if (mp_iszero (a) == 0 && mp_iszero (b) == 1) { |
|
29 return mp_abs (a, c); |
|
30 } |
|
31 |
|
32 /* optimized. At this point if a == 0 then |
|
33 * b must equal zero too |
|
34 */ |
|
35 if (mp_iszero (a) == 1) { |
|
36 mp_zero(c); |
|
37 return MP_OKAY; |
|
38 } |
|
39 |
|
40 /* get copies of a and b we can modify */ |
|
41 if ((res = mp_init_copy (&u, a)) != MP_OKAY) { |
|
42 return res; |
|
43 } |
|
44 |
|
45 if ((res = mp_init_copy (&v, b)) != MP_OKAY) { |
|
46 goto __U; |
|
47 } |
|
48 |
|
49 /* must be positive for the remainder of the algorithm */ |
|
50 u.sign = v.sign = MP_ZPOS; |
|
51 |
|
52 /* B1. Find the common power of two for u and v */ |
|
53 u_lsb = mp_cnt_lsb(&u); |
|
54 v_lsb = mp_cnt_lsb(&v); |
|
55 k = MIN(u_lsb, v_lsb); |
|
56 |
|
57 if (k > 0) { |
|
58 /* divide the power of two out */ |
|
59 if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) { |
|
60 goto __V; |
|
61 } |
|
62 |
|
63 if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) { |
|
64 goto __V; |
|
65 } |
|
66 } |
|
67 |
|
68 /* divide any remaining factors of two out */ |
|
69 if (u_lsb != k) { |
|
70 if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) { |
|
71 goto __V; |
|
72 } |
|
73 } |
|
74 |
|
75 if (v_lsb != k) { |
|
76 if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) { |
|
77 goto __V; |
|
78 } |
|
79 } |
|
80 |
|
81 while (mp_iszero(&v) == 0) { |
|
82 /* make sure v is the largest */ |
|
83 if (mp_cmp_mag(&u, &v) == MP_GT) { |
|
84 /* swap u and v to make sure v is >= u */ |
|
85 mp_exch(&u, &v); |
|
86 } |
|
87 |
|
88 /* subtract smallest from largest */ |
|
89 if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) { |
|
90 goto __V; |
|
91 } |
|
92 |
|
93 /* Divide out all factors of two */ |
|
94 if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) { |
|
95 goto __V; |
|
96 } |
|
97 } |
|
98 |
|
99 /* multiply by 2**k which we divided out at the beginning */ |
|
100 if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) { |
|
101 goto __V; |
|
102 } |
|
103 c->sign = MP_ZPOS; |
|
104 res = MP_OKAY; |
|
105 __V:mp_clear (&u); |
|
106 __U:mp_clear (&v); |
|
107 return res; |
|
108 } |
142
|
109 #endif |