142
|
1 #include <tommath.h> |
|
2 #ifdef BN_MP_TOOM_SQR_C |
2
|
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
4 * |
|
5 * LibTomMath is a library that provides multiple-precision |
|
6 * integer arithmetic as well as number theoretic functionality. |
|
7 * |
|
8 * The library was designed directly after the MPI library by |
|
9 * Michael Fromberger but has been written from scratch with |
|
10 * additional optimizations in place. |
|
11 * |
|
12 * The library is free for all purposes without any express |
|
13 * guarantee it works. |
|
14 * |
|
15 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
16 */ |
|
17 |
|
18 /* squaring using Toom-Cook 3-way algorithm */ |
|
19 int |
|
20 mp_toom_sqr(mp_int *a, mp_int *b) |
|
21 { |
|
22 mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2; |
|
23 int res, B; |
|
24 |
|
25 /* init temps */ |
|
26 if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL)) != MP_OKAY) { |
|
27 return res; |
|
28 } |
|
29 |
|
30 /* B */ |
|
31 B = a->used / 3; |
|
32 |
|
33 /* a = a2 * B**2 + a1 * B + a0 */ |
|
34 if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) { |
|
35 goto ERR; |
|
36 } |
|
37 |
|
38 if ((res = mp_copy(a, &a1)) != MP_OKAY) { |
|
39 goto ERR; |
|
40 } |
|
41 mp_rshd(&a1, B); |
|
42 mp_mod_2d(&a1, DIGIT_BIT * B, &a1); |
|
43 |
|
44 if ((res = mp_copy(a, &a2)) != MP_OKAY) { |
|
45 goto ERR; |
|
46 } |
|
47 mp_rshd(&a2, B*2); |
|
48 |
|
49 /* w0 = a0*a0 */ |
|
50 if ((res = mp_sqr(&a0, &w0)) != MP_OKAY) { |
|
51 goto ERR; |
|
52 } |
|
53 |
|
54 /* w4 = a2 * a2 */ |
|
55 if ((res = mp_sqr(&a2, &w4)) != MP_OKAY) { |
|
56 goto ERR; |
|
57 } |
|
58 |
|
59 /* w1 = (a2 + 2(a1 + 2a0))**2 */ |
|
60 if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) { |
|
61 goto ERR; |
|
62 } |
|
63 if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { |
|
64 goto ERR; |
|
65 } |
|
66 if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { |
|
67 goto ERR; |
|
68 } |
|
69 if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) { |
|
70 goto ERR; |
|
71 } |
|
72 |
|
73 if ((res = mp_sqr(&tmp1, &w1)) != MP_OKAY) { |
|
74 goto ERR; |
|
75 } |
|
76 |
|
77 /* w3 = (a0 + 2(a1 + 2a2))**2 */ |
|
78 if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) { |
|
79 goto ERR; |
|
80 } |
|
81 if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { |
|
82 goto ERR; |
|
83 } |
|
84 if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { |
|
85 goto ERR; |
|
86 } |
|
87 if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { |
|
88 goto ERR; |
|
89 } |
|
90 |
|
91 if ((res = mp_sqr(&tmp1, &w3)) != MP_OKAY) { |
|
92 goto ERR; |
|
93 } |
|
94 |
|
95 |
|
96 /* w2 = (a2 + a1 + a0)**2 */ |
|
97 if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) { |
|
98 goto ERR; |
|
99 } |
|
100 if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { |
|
101 goto ERR; |
|
102 } |
|
103 if ((res = mp_sqr(&tmp1, &w2)) != MP_OKAY) { |
|
104 goto ERR; |
|
105 } |
|
106 |
|
107 /* now solve the matrix |
|
108 |
|
109 0 0 0 0 1 |
|
110 1 2 4 8 16 |
|
111 1 1 1 1 1 |
|
112 16 8 4 2 1 |
|
113 1 0 0 0 0 |
|
114 |
|
115 using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication. |
|
116 */ |
|
117 |
|
118 /* r1 - r4 */ |
|
119 if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) { |
|
120 goto ERR; |
|
121 } |
|
122 /* r3 - r0 */ |
|
123 if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) { |
|
124 goto ERR; |
|
125 } |
|
126 /* r1/2 */ |
|
127 if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) { |
|
128 goto ERR; |
|
129 } |
|
130 /* r3/2 */ |
|
131 if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) { |
|
132 goto ERR; |
|
133 } |
|
134 /* r2 - r0 - r4 */ |
|
135 if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) { |
|
136 goto ERR; |
|
137 } |
|
138 if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) { |
|
139 goto ERR; |
|
140 } |
|
141 /* r1 - r2 */ |
|
142 if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { |
|
143 goto ERR; |
|
144 } |
|
145 /* r3 - r2 */ |
|
146 if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { |
|
147 goto ERR; |
|
148 } |
|
149 /* r1 - 8r0 */ |
|
150 if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) { |
|
151 goto ERR; |
|
152 } |
|
153 if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) { |
|
154 goto ERR; |
|
155 } |
|
156 /* r3 - 8r4 */ |
|
157 if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) { |
|
158 goto ERR; |
|
159 } |
|
160 if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) { |
|
161 goto ERR; |
|
162 } |
|
163 /* 3r2 - r1 - r3 */ |
|
164 if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) { |
|
165 goto ERR; |
|
166 } |
|
167 if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) { |
|
168 goto ERR; |
|
169 } |
|
170 if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) { |
|
171 goto ERR; |
|
172 } |
|
173 /* r1 - r2 */ |
|
174 if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { |
|
175 goto ERR; |
|
176 } |
|
177 /* r3 - r2 */ |
|
178 if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { |
|
179 goto ERR; |
|
180 } |
|
181 /* r1/3 */ |
|
182 if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) { |
|
183 goto ERR; |
|
184 } |
|
185 /* r3/3 */ |
|
186 if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) { |
|
187 goto ERR; |
|
188 } |
|
189 |
|
190 /* at this point shift W[n] by B*n */ |
|
191 if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) { |
|
192 goto ERR; |
|
193 } |
|
194 if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) { |
|
195 goto ERR; |
|
196 } |
|
197 if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) { |
|
198 goto ERR; |
|
199 } |
|
200 if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) { |
|
201 goto ERR; |
|
202 } |
|
203 |
|
204 if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) { |
|
205 goto ERR; |
|
206 } |
|
207 if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) { |
|
208 goto ERR; |
|
209 } |
|
210 if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) { |
|
211 goto ERR; |
|
212 } |
|
213 if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) { |
|
214 goto ERR; |
|
215 } |
|
216 |
|
217 ERR: |
|
218 mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL); |
|
219 return res; |
|
220 } |
|
221 |
142
|
222 #endif |