2
|
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
|
2 * |
|
3 * LibTomMath is a library that provides multiple-precision |
|
4 * integer arithmetic as well as number theoretic functionality. |
|
5 * |
|
6 * The library was designed directly after the MPI library by |
|
7 * Michael Fromberger but has been written from scratch with |
|
8 * additional optimizations in place. |
|
9 * |
|
10 * The library is free for all purposes without any express |
|
11 * guarantee it works. |
|
12 * |
|
13 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
|
14 */ |
|
15 #include <tommath.h> |
|
16 |
|
17 /* Greatest Common Divisor using the binary method */ |
|
18 int mp_gcd (mp_int * a, mp_int * b, mp_int * c) |
|
19 { |
|
20 mp_int u, v; |
|
21 int k, u_lsb, v_lsb, res; |
|
22 |
|
23 /* either zero than gcd is the largest */ |
|
24 if (mp_iszero (a) == 1 && mp_iszero (b) == 0) { |
|
25 return mp_abs (b, c); |
|
26 } |
|
27 if (mp_iszero (a) == 0 && mp_iszero (b) == 1) { |
|
28 return mp_abs (a, c); |
|
29 } |
|
30 |
|
31 /* optimized. At this point if a == 0 then |
|
32 * b must equal zero too |
|
33 */ |
|
34 if (mp_iszero (a) == 1) { |
|
35 mp_zero(c); |
|
36 return MP_OKAY; |
|
37 } |
|
38 |
|
39 /* get copies of a and b we can modify */ |
|
40 if ((res = mp_init_copy (&u, a)) != MP_OKAY) { |
|
41 return res; |
|
42 } |
|
43 |
|
44 if ((res = mp_init_copy (&v, b)) != MP_OKAY) { |
|
45 goto __U; |
|
46 } |
|
47 |
|
48 /* must be positive for the remainder of the algorithm */ |
|
49 u.sign = v.sign = MP_ZPOS; |
|
50 |
|
51 /* B1. Find the common power of two for u and v */ |
|
52 u_lsb = mp_cnt_lsb(&u); |
|
53 v_lsb = mp_cnt_lsb(&v); |
|
54 k = MIN(u_lsb, v_lsb); |
|
55 |
|
56 if (k > 0) { |
|
57 /* divide the power of two out */ |
|
58 if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) { |
|
59 goto __V; |
|
60 } |
|
61 |
|
62 if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) { |
|
63 goto __V; |
|
64 } |
|
65 } |
|
66 |
|
67 /* divide any remaining factors of two out */ |
|
68 if (u_lsb != k) { |
|
69 if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) { |
|
70 goto __V; |
|
71 } |
|
72 } |
|
73 |
|
74 if (v_lsb != k) { |
|
75 if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) { |
|
76 goto __V; |
|
77 } |
|
78 } |
|
79 |
|
80 while (mp_iszero(&v) == 0) { |
|
81 /* make sure v is the largest */ |
|
82 if (mp_cmp_mag(&u, &v) == MP_GT) { |
|
83 /* swap u and v to make sure v is >= u */ |
|
84 mp_exch(&u, &v); |
|
85 } |
|
86 |
|
87 /* subtract smallest from largest */ |
|
88 if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) { |
|
89 goto __V; |
|
90 } |
|
91 |
|
92 /* Divide out all factors of two */ |
|
93 if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) { |
|
94 goto __V; |
|
95 } |
|
96 } |
|
97 |
|
98 /* multiply by 2**k which we divided out at the beginning */ |
|
99 if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) { |
|
100 goto __V; |
|
101 } |
|
102 c->sign = MP_ZPOS; |
|
103 res = MP_OKAY; |
|
104 __V:mp_clear (&u); |
|
105 __U:mp_clear (&v); |
|
106 return res; |
|
107 } |