comparison keyimport.c @ 391:00fcf5045160

propagate from branch 'au.asn.ucc.matt.ltc.dropbear' (head c1db4398d56c56c6d06ae1e20c1e0d04dbb598ed) to branch 'au.asn.ucc.matt.dropbear' (head d26d5eb2837f46b56a33fb0e7573aa0201abd4d5)
author Matt Johnston <matt@ucc.asn.au>
date Thu, 11 Jan 2007 04:29:08 +0000
parents 454a34b2dfd1
children 9dbc0c443497
comparison
equal deleted inserted replaced
390:d8e44bef7917 391:00fcf5045160
1 /*
2 * Based on PuTTY's import.c for importing/exporting OpenSSH and SSH.com
3 * keyfiles.
4 *
5 * The horribleness of the code is probably mine (matt).
6 *
7 * Modifications copyright 2003 Matt Johnston
8 *
9 * PuTTY is copyright 1997-2003 Simon Tatham.
10 *
11 * Portions copyright Robert de Bath, Joris van Rantwijk, Delian
12 * Delchev, Andreas Schultz, Jeroen Massar, Wez Furlong, Nicolas Barry,
13 * Justin Bradford, and CORE SDI S.A.
14 *
15 * Permission is hereby granted, free of charge, to any person
16 * obtaining a copy of this software and associated documentation files
17 * (the "Software"), to deal in the Software without restriction,
18 * including without limitation the rights to use, copy, modify, merge,
19 * publish, distribute, sublicense, and/or sell copies of the Software,
20 * and to permit persons to whom the Software is furnished to do so,
21 * subject to the following conditions:
22 *
23 * The above copyright notice and this permission notice shall be
24 * included in all copies or substantial portions of the Software.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE
30 * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
31 * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
32 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
33 */
34
35 #include "keyimport.h"
36 #include "bignum.h"
37 #include "buffer.h"
38 #include "dbutil.h"
39
40 #define PUT_32BIT(cp, value) do { \
41 (cp)[3] = (unsigned char)(value); \
42 (cp)[2] = (unsigned char)((value) >> 8); \
43 (cp)[1] = (unsigned char)((value) >> 16); \
44 (cp)[0] = (unsigned char)((value) >> 24); } while (0)
45
46 #define GET_32BIT(cp) \
47 (((unsigned long)(unsigned char)(cp)[0] << 24) | \
48 ((unsigned long)(unsigned char)(cp)[1] << 16) | \
49 ((unsigned long)(unsigned char)(cp)[2] << 8) | \
50 ((unsigned long)(unsigned char)(cp)[3]))
51
52 static int openssh_encrypted(const char *filename);
53 static sign_key *openssh_read(const char *filename, char *passphrase);
54 static int openssh_write(const char *filename, sign_key *key,
55 char *passphrase);
56
57 static int dropbear_write(const char*filename, sign_key * key);
58 static sign_key *dropbear_read(const char* filename);
59
60 #if 0
61 static int sshcom_encrypted(const char *filename, char **comment);
62 static struct ssh2_userkey *sshcom_read(const char *filename, char *passphrase);
63 static int sshcom_write(const char *filename, struct ssh2_userkey *key,
64 char *passphrase);
65 #endif
66
67 int import_encrypted(const char* filename, int filetype) {
68
69 if (filetype == KEYFILE_OPENSSH) {
70 return openssh_encrypted(filename);
71 #if 0
72 } else if (filetype == KEYFILE_SSHCOM) {
73 return sshcom_encrypted(filename, NULL);
74 #endif
75 }
76 return 0;
77 }
78
79 sign_key *import_read(const char *filename, char *passphrase, int filetype) {
80
81 if (filetype == KEYFILE_OPENSSH) {
82 return openssh_read(filename, passphrase);
83 } else if (filetype == KEYFILE_DROPBEAR) {
84 return dropbear_read(filename);
85 #if 0
86 } else if (filetype == KEYFILE_SSHCOM) {
87 return sshcom_read(filename, passphrase);
88 #endif
89 }
90 return NULL;
91 }
92
93 int import_write(const char *filename, sign_key *key, char *passphrase,
94 int filetype) {
95
96 if (filetype == KEYFILE_OPENSSH) {
97 return openssh_write(filename, key, passphrase);
98 } else if (filetype == KEYFILE_DROPBEAR) {
99 return dropbear_write(filename, key);
100 #if 0
101 } else if (filetype == KEYFILE_SSHCOM) {
102 return sshcom_write(filename, key, passphrase);
103 #endif
104 }
105 return 0;
106 }
107
108 static sign_key *dropbear_read(const char* filename) {
109
110 buffer * buf = NULL;
111 sign_key *ret = NULL;
112 int type;
113
114 buf = buf_new(MAX_PRIVKEY_SIZE);
115 if (buf_readfile(buf, filename) == DROPBEAR_FAILURE) {
116 goto error;
117 }
118
119 buf_setpos(buf, 0);
120 ret = new_sign_key();
121
122 type = DROPBEAR_SIGNKEY_ANY;
123 if (buf_get_priv_key(buf, ret, &type) == DROPBEAR_FAILURE){
124 goto error;
125 }
126 buf_free(buf);
127
128 return ret;
129
130 error:
131 if (buf) {
132 buf_free(buf);
133 }
134 if (ret) {
135 sign_key_free(ret);
136 }
137 return NULL;
138 }
139
140 /* returns 0 on fail, 1 on success */
141 static int dropbear_write(const char*filename, sign_key * key) {
142
143 int keytype = -1;
144 buffer * buf;
145 FILE*fp;
146 int len;
147 int ret;
148
149 #ifdef DROPBEAR_RSA
150 if (key->rsakey != NULL) {
151 keytype = DROPBEAR_SIGNKEY_RSA;
152 }
153 #endif
154 #ifdef DROPBEAR_DSS
155 if (key->dsskey != NULL) {
156 keytype = DROPBEAR_SIGNKEY_DSS;
157 }
158 #endif
159
160 buf = buf_new(MAX_PRIVKEY_SIZE);
161 buf_put_priv_key(buf, key, keytype);
162
163 fp = fopen(filename, "w");
164 if (!fp) {
165 ret = 0;
166 goto out;
167 }
168
169 buf_setpos(buf, 0);
170 do {
171 len = fwrite(buf_getptr(buf, buf->len - buf->pos),
172 1, buf->len - buf->pos, fp);
173 buf_incrpos(buf, len);
174 } while (len > 0 && buf->len != buf->pos);
175
176 fclose(fp);
177
178 if (buf->pos != buf->len) {
179 ret = 0;
180 } else {
181 ret = 1;
182 }
183 out:
184 buf_free(buf);
185 return ret;
186 }
187
188
189 /* ----------------------------------------------------------------------
190 * Helper routines. (The base64 ones are defined in sshpubk.c.)
191 */
192
193 #define isbase64(c) ( ((c) >= 'A' && (c) <= 'Z') || \
194 ((c) >= 'a' && (c) <= 'z') || \
195 ((c) >= '0' && (c) <= '9') || \
196 (c) == '+' || (c) == '/' || (c) == '=' \
197 )
198
199 /* cpl has to be less than 100 */
200 static void base64_encode_fp(FILE * fp, unsigned char *data,
201 int datalen, int cpl)
202 {
203 char out[100];
204 int n;
205 unsigned long outlen;
206 int rawcpl;
207 rawcpl = cpl * 3 / 4;
208 dropbear_assert((unsigned int)cpl < sizeof(out));
209
210 while (datalen > 0) {
211 n = (datalen < rawcpl ? datalen : rawcpl);
212 outlen = sizeof(out);
213 base64_encode(data, n, out, &outlen);
214 data += n;
215 datalen -= n;
216 fwrite(out, 1, outlen, fp);
217 fputc('\n', fp);
218 }
219 }
220 /*
221 * Read an ASN.1/BER identifier and length pair.
222 *
223 * Flags are a combination of the #defines listed below.
224 *
225 * Returns -1 if unsuccessful; otherwise returns the number of
226 * bytes used out of the source data.
227 */
228
229 /* ASN.1 tag classes. */
230 #define ASN1_CLASS_UNIVERSAL (0 << 6)
231 #define ASN1_CLASS_APPLICATION (1 << 6)
232 #define ASN1_CLASS_CONTEXT_SPECIFIC (2 << 6)
233 #define ASN1_CLASS_PRIVATE (3 << 6)
234 #define ASN1_CLASS_MASK (3 << 6)
235
236 /* Primitive versus constructed bit. */
237 #define ASN1_CONSTRUCTED (1 << 5)
238
239 static int ber_read_id_len(void *source, int sourcelen,
240 int *id, int *length, int *flags)
241 {
242 unsigned char *p = (unsigned char *) source;
243
244 if (sourcelen == 0)
245 return -1;
246
247 *flags = (*p & 0xE0);
248 if ((*p & 0x1F) == 0x1F) {
249 *id = 0;
250 while (*p & 0x80) {
251 *id = (*id << 7) | (*p & 0x7F);
252 p++, sourcelen--;
253 if (sourcelen == 0)
254 return -1;
255 }
256 *id = (*id << 7) | (*p & 0x7F);
257 p++, sourcelen--;
258 } else {
259 *id = *p & 0x1F;
260 p++, sourcelen--;
261 }
262
263 if (sourcelen == 0)
264 return -1;
265
266 if (*p & 0x80) {
267 int n = *p & 0x7F;
268 p++, sourcelen--;
269 if (sourcelen < n)
270 return -1;
271 *length = 0;
272 while (n--)
273 *length = (*length << 8) | (*p++);
274 sourcelen -= n;
275 } else {
276 *length = *p;
277 p++, sourcelen--;
278 }
279
280 return p - (unsigned char *) source;
281 }
282
283 /*
284 * Write an ASN.1/BER identifier and length pair. Returns the
285 * number of bytes consumed. Assumes dest contains enough space.
286 * Will avoid writing anything if dest is NULL, but still return
287 * amount of space required.
288 */
289 static int ber_write_id_len(void *dest, int id, int length, int flags)
290 {
291 unsigned char *d = (unsigned char *)dest;
292 int len = 0;
293
294 if (id <= 30) {
295 /*
296 * Identifier is one byte.
297 */
298 len++;
299 if (d) *d++ = id | flags;
300 } else {
301 int n;
302 /*
303 * Identifier is multiple bytes: the first byte is 11111
304 * plus the flags, and subsequent bytes encode the value of
305 * the identifier, 7 bits at a time, with the top bit of
306 * each byte 1 except the last one which is 0.
307 */
308 len++;
309 if (d) *d++ = 0x1F | flags;
310 for (n = 1; (id >> (7*n)) > 0; n++)
311 continue; /* count the bytes */
312 while (n--) {
313 len++;
314 if (d) *d++ = (n ? 0x80 : 0) | ((id >> (7*n)) & 0x7F);
315 }
316 }
317
318 if (length < 128) {
319 /*
320 * Length is one byte.
321 */
322 len++;
323 if (d) *d++ = length;
324 } else {
325 int n;
326 /*
327 * Length is multiple bytes. The first is 0x80 plus the
328 * number of subsequent bytes, and the subsequent bytes
329 * encode the actual length.
330 */
331 for (n = 1; (length >> (8*n)) > 0; n++)
332 continue; /* count the bytes */
333 len++;
334 if (d) *d++ = 0x80 | n;
335 while (n--) {
336 len++;
337 if (d) *d++ = (length >> (8*n)) & 0xFF;
338 }
339 }
340
341 return len;
342 }
343
344
345 /* Simple structure to point to an mp-int within a blob. */
346 struct mpint_pos { void *start; int bytes; };
347
348 /* ----------------------------------------------------------------------
349 * Code to read and write OpenSSH private keys.
350 */
351
352 enum { OSSH_DSA, OSSH_RSA };
353 struct openssh_key {
354 int type;
355 int encrypted;
356 char iv[32];
357 unsigned char *keyblob;
358 unsigned int keyblob_len, keyblob_size;
359 };
360
361 static struct openssh_key *load_openssh_key(const char *filename)
362 {
363 struct openssh_key *ret;
364 FILE *fp = NULL;
365 char buffer[256];
366 char *errmsg = NULL, *p = NULL;
367 int headers_done;
368 unsigned long len, outlen;
369
370 ret = (struct openssh_key*)m_malloc(sizeof(struct openssh_key));
371 ret->keyblob = NULL;
372 ret->keyblob_len = ret->keyblob_size = 0;
373 ret->encrypted = 0;
374 memset(ret->iv, 0, sizeof(ret->iv));
375
376 if (strlen(filename) == 1 && filename[0] == '-') {
377 fp = stdin;
378 } else {
379 fp = fopen(filename, "r");
380 }
381 if (!fp) {
382 errmsg = "Unable to open key file";
383 goto error;
384 }
385 if (!fgets(buffer, sizeof(buffer), fp) ||
386 0 != strncmp(buffer, "-----BEGIN ", 11) ||
387 0 != strcmp(buffer+strlen(buffer)-17, "PRIVATE KEY-----\n")) {
388 errmsg = "File does not begin with OpenSSH key header";
389 goto error;
390 }
391 if (!strcmp(buffer, "-----BEGIN RSA PRIVATE KEY-----\n"))
392 ret->type = OSSH_RSA;
393 else if (!strcmp(buffer, "-----BEGIN DSA PRIVATE KEY-----\n"))
394 ret->type = OSSH_DSA;
395 else {
396 errmsg = "Unrecognised key type";
397 goto error;
398 }
399
400 headers_done = 0;
401 while (1) {
402 if (!fgets(buffer, sizeof(buffer), fp)) {
403 errmsg = "Unexpected end of file";
404 goto error;
405 }
406 if (0 == strncmp(buffer, "-----END ", 9) &&
407 0 == strcmp(buffer+strlen(buffer)-17, "PRIVATE KEY-----\n"))
408 break; /* done */
409 if ((p = strchr(buffer, ':')) != NULL) {
410 if (headers_done) {
411 errmsg = "Header found in body of key data";
412 goto error;
413 }
414 *p++ = '\0';
415 while (*p && isspace((unsigned char)*p)) p++;
416 if (!strcmp(buffer, "Proc-Type")) {
417 if (p[0] != '4' || p[1] != ',') {
418 errmsg = "Proc-Type is not 4 (only 4 is supported)";
419 goto error;
420 }
421 p += 2;
422 if (!strcmp(p, "ENCRYPTED\n"))
423 ret->encrypted = 1;
424 } else if (!strcmp(buffer, "DEK-Info")) {
425 int i, j;
426
427 if (strncmp(p, "DES-EDE3-CBC,", 13)) {
428 errmsg = "Ciphers other than DES-EDE3-CBC not supported";
429 goto error;
430 }
431 p += 13;
432 for (i = 0; i < 8; i++) {
433 if (1 != sscanf(p, "%2x", &j))
434 break;
435 ret->iv[i] = j;
436 p += 2;
437 }
438 if (i < 8) {
439 errmsg = "Expected 16-digit iv in DEK-Info";
440 goto error;
441 }
442 }
443 } else {
444 headers_done = 1;
445 len = strlen(buffer);
446 outlen = len*4/3;
447 if (ret->keyblob_len + outlen > ret->keyblob_size) {
448 ret->keyblob_size = ret->keyblob_len + outlen + 256;
449 ret->keyblob = (unsigned char*)m_realloc(ret->keyblob,
450 ret->keyblob_size);
451 }
452 outlen = ret->keyblob_size - ret->keyblob_len;
453 if (base64_decode(buffer, len,
454 ret->keyblob + ret->keyblob_len, &outlen) != CRYPT_OK){
455 errmsg = "Error decoding base64";
456 goto error;
457 }
458 ret->keyblob_len += outlen;
459 }
460 }
461
462 if (ret->keyblob_len == 0 || !ret->keyblob) {
463 errmsg = "Key body not present";
464 goto error;
465 }
466
467 if (ret->encrypted && ret->keyblob_len % 8 != 0) {
468 errmsg = "Encrypted key blob is not a multiple of cipher block size";
469 goto error;
470 }
471
472 memset(buffer, 0, sizeof(buffer));
473 return ret;
474
475 error:
476 memset(buffer, 0, sizeof(buffer));
477 if (ret) {
478 if (ret->keyblob) {
479 memset(ret->keyblob, 0, ret->keyblob_size);
480 m_free(ret->keyblob);
481 }
482 memset(&ret, 0, sizeof(ret));
483 m_free(ret);
484 }
485 if (fp) {
486 fclose(fp);
487 }
488 if (errmsg) {
489 fprintf(stderr, "Error: %s\n", errmsg);
490 }
491 return NULL;
492 }
493
494 static int openssh_encrypted(const char *filename)
495 {
496 struct openssh_key *key = load_openssh_key(filename);
497 int ret;
498
499 if (!key)
500 return 0;
501 ret = key->encrypted;
502 memset(key->keyblob, 0, key->keyblob_size);
503 m_free(key->keyblob);
504 memset(&key, 0, sizeof(key));
505 m_free(key);
506 return ret;
507 }
508
509 static sign_key *openssh_read(const char *filename, char *passphrase)
510 {
511 struct openssh_key *key;
512 unsigned char *p;
513 int ret, id, len, flags;
514 int i, num_integers = 0;
515 sign_key *retval = NULL;
516 char *errmsg;
517 char *modptr = NULL;
518 int modlen = -9999;
519 int type;
520
521 sign_key *retkey;
522 buffer * blobbuf = NULL;
523
524 key = load_openssh_key(filename);
525
526 if (!key)
527 return NULL;
528
529 if (key->encrypted) {
530 errmsg = "encrypted keys not supported currently";
531 goto error;
532 #if 0
533 /* matt TODO */
534 /*
535 * Derive encryption key from passphrase and iv/salt:
536 *
537 * - let block A equal MD5(passphrase || iv)
538 * - let block B equal MD5(A || passphrase || iv)
539 * - block C would be MD5(B || passphrase || iv) and so on
540 * - encryption key is the first N bytes of A || B
541 */
542 struct MD5Context md5c;
543 unsigned char keybuf[32];
544
545 MD5Init(&md5c);
546 MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase));
547 MD5Update(&md5c, (unsigned char *)key->iv, 8);
548 MD5Final(keybuf, &md5c);
549
550 MD5Init(&md5c);
551 MD5Update(&md5c, keybuf, 16);
552 MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase));
553 MD5Update(&md5c, (unsigned char *)key->iv, 8);
554 MD5Final(keybuf+16, &md5c);
555
556 /*
557 * Now decrypt the key blob.
558 */
559 des3_decrypt_pubkey_ossh(keybuf, (unsigned char *)key->iv,
560 key->keyblob, key->keyblob_len);
561
562 memset(&md5c, 0, sizeof(md5c));
563 memset(keybuf, 0, sizeof(keybuf));
564 #endif
565 }
566
567 /*
568 * Now we have a decrypted key blob, which contains an ASN.1
569 * encoded private key. We must now untangle the ASN.1.
570 *
571 * We expect the whole key blob to be formatted as a SEQUENCE
572 * (0x30 followed by a length code indicating that the rest of
573 * the blob is part of the sequence). Within that SEQUENCE we
574 * expect to see a bunch of INTEGERs. What those integers mean
575 * depends on the key type:
576 *
577 * - For RSA, we expect the integers to be 0, n, e, d, p, q,
578 * dmp1, dmq1, iqmp in that order. (The last three are d mod
579 * (p-1), d mod (q-1), inverse of q mod p respectively.)
580 *
581 * - For DSA, we expect them to be 0, p, q, g, y, x in that
582 * order.
583 */
584
585 p = key->keyblob;
586
587 /* Expect the SEQUENCE header. Take its absence as a failure to decrypt. */
588 ret = ber_read_id_len(p, key->keyblob_len, &id, &len, &flags);
589 p += ret;
590 if (ret < 0 || id != 16) {
591 errmsg = "ASN.1 decoding failure - wrong password?";
592 goto error;
593 }
594
595 /* Expect a load of INTEGERs. */
596 if (key->type == OSSH_RSA)
597 num_integers = 9;
598 else if (key->type == OSSH_DSA)
599 num_integers = 6;
600
601 /*
602 * Space to create key blob in.
603 */
604 blobbuf = buf_new(3000);
605
606 if (key->type == OSSH_DSA) {
607 buf_putstring(blobbuf, "ssh-dss", 7);
608 } else if (key->type == OSSH_RSA) {
609 buf_putstring(blobbuf, "ssh-rsa", 7);
610 }
611
612 for (i = 0; i < num_integers; i++) {
613 ret = ber_read_id_len(p, key->keyblob+key->keyblob_len-p,
614 &id, &len, &flags);
615 p += ret;
616 if (ret < 0 || id != 2 ||
617 key->keyblob+key->keyblob_len-p < len) {
618 errmsg = "ASN.1 decoding failure";
619 goto error;
620 }
621
622 if (i == 0) {
623 /*
624 * The first integer should be zero always (I think
625 * this is some sort of version indication).
626 */
627 if (len != 1 || p[0] != 0) {
628 errmsg = "Version number mismatch";
629 goto error;
630 }
631 } else if (key->type == OSSH_RSA) {
632 /*
633 * OpenSSH key order is n, e, d, p, q, dmp1, dmq1, iqmp
634 * but we want e, n, d, p, q
635 */
636 if (i == 1) {
637 /* Save the details for after we deal with number 2. */
638 modptr = (char *)p;
639 modlen = len;
640 } else if (i >= 2 && i <= 5) {
641 buf_putstring(blobbuf, p, len);
642 if (i == 2) {
643 buf_putstring(blobbuf, modptr, modlen);
644 }
645 }
646 } else if (key->type == OSSH_DSA) {
647 /*
648 * OpenSSH key order is p, q, g, y, x,
649 * we want the same.
650 */
651 buf_putstring(blobbuf, p, len);
652 }
653
654 /* Skip past the number. */
655 p += len;
656 }
657
658 /*
659 * Now put together the actual key. Simplest way to do this is
660 * to assemble our own key blobs and feed them to the createkey
661 * functions; this is a bit faffy but it does mean we get all
662 * the sanity checks for free.
663 */
664 retkey = new_sign_key();
665 buf_setpos(blobbuf, 0);
666 type = DROPBEAR_SIGNKEY_ANY;
667 if (buf_get_priv_key(blobbuf, retkey, &type)
668 != DROPBEAR_SUCCESS) {
669 errmsg = "unable to create key structure";
670 sign_key_free(retkey);
671 retkey = NULL;
672 goto error;
673 }
674
675 errmsg = NULL; /* no error */
676 retval = retkey;
677
678 error:
679 if (blobbuf) {
680 buf_burn(blobbuf);
681 buf_free(blobbuf);
682 }
683 m_burn(key->keyblob, key->keyblob_size);
684 m_free(key->keyblob);
685 m_burn(key, sizeof(key));
686 m_free(key);
687 if (errmsg) {
688 fprintf(stderr, "Error: %s\n", errmsg);
689 }
690 return retval;
691 }
692
693 static int openssh_write(const char *filename, sign_key *key,
694 char *passphrase)
695 {
696 buffer * keyblob = NULL;
697 buffer * extrablob = NULL; /* used for calculated values to write */
698 unsigned char *outblob = NULL;
699 int outlen = -9999;
700 struct mpint_pos numbers[9];
701 int nnumbers = -1, pos, len, seqlen, i;
702 char *header = NULL, *footer = NULL;
703 char zero[1];
704 unsigned char iv[8];
705 int ret = 0;
706 FILE *fp;
707 int keytype = -1;
708
709 #ifdef DROPBEAR_RSA
710 mp_int dmp1, dmq1, iqmp, tmpval; /* for rsa */
711
712 if (key->rsakey != NULL) {
713 keytype = DROPBEAR_SIGNKEY_RSA;
714 }
715 #endif
716 #ifdef DROPBEAR_DSS
717 if (key->dsskey != NULL) {
718 keytype = DROPBEAR_SIGNKEY_DSS;
719 }
720 #endif
721
722 dropbear_assert(keytype != -1);
723
724 /*
725 * Fetch the key blobs.
726 */
727 keyblob = buf_new(3000);
728 buf_put_priv_key(keyblob, key, keytype);
729
730 buf_setpos(keyblob, 0);
731 /* skip the "ssh-rsa" or "ssh-dss" header */
732 buf_incrpos(keyblob, buf_getint(keyblob));
733
734 /*
735 * Find the sequence of integers to be encoded into the OpenSSH
736 * key blob, and also decide on the header line.
737 */
738 numbers[0].start = zero; numbers[0].bytes = 1; zero[0] = '\0';
739
740 #ifdef DROPBEAR_RSA
741 if (keytype == DROPBEAR_SIGNKEY_RSA) {
742
743 if (key->rsakey->p == NULL || key->rsakey->q == NULL) {
744 fprintf(stderr, "Pre-0.33 Dropbear keys cannot be converted to OpenSSH keys.\n");
745 goto error;
746 }
747
748 /* e */
749 numbers[2].bytes = buf_getint(keyblob);
750 numbers[2].start = buf_getptr(keyblob, numbers[2].bytes);
751 buf_incrpos(keyblob, numbers[2].bytes);
752
753 /* n */
754 numbers[1].bytes = buf_getint(keyblob);
755 numbers[1].start = buf_getptr(keyblob, numbers[1].bytes);
756 buf_incrpos(keyblob, numbers[1].bytes);
757
758 /* d */
759 numbers[3].bytes = buf_getint(keyblob);
760 numbers[3].start = buf_getptr(keyblob, numbers[3].bytes);
761 buf_incrpos(keyblob, numbers[3].bytes);
762
763 /* p */
764 numbers[4].bytes = buf_getint(keyblob);
765 numbers[4].start = buf_getptr(keyblob, numbers[4].bytes);
766 buf_incrpos(keyblob, numbers[4].bytes);
767
768 /* q */
769 numbers[5].bytes = buf_getint(keyblob);
770 numbers[5].start = buf_getptr(keyblob, numbers[5].bytes);
771 buf_incrpos(keyblob, numbers[5].bytes);
772
773 /* now calculate some extra parameters: */
774 m_mp_init(&tmpval);
775 m_mp_init(&dmp1);
776 m_mp_init(&dmq1);
777 m_mp_init(&iqmp);
778
779 /* dmp1 = d mod (p-1) */
780 if (mp_sub_d(key->rsakey->p, 1, &tmpval) != MP_OKAY) {
781 fprintf(stderr, "Bignum error for p-1\n");
782 goto error;
783 }
784 if (mp_mod(key->rsakey->d, &tmpval, &dmp1) != MP_OKAY) {
785 fprintf(stderr, "Bignum error for dmp1\n");
786 goto error;
787 }
788
789 /* dmq1 = d mod (q-1) */
790 if (mp_sub_d(key->rsakey->q, 1, &tmpval) != MP_OKAY) {
791 fprintf(stderr, "Bignum error for q-1\n");
792 goto error;
793 }
794 if (mp_mod(key->rsakey->d, &tmpval, &dmq1) != MP_OKAY) {
795 fprintf(stderr, "Bignum error for dmq1\n");
796 goto error;
797 }
798
799 /* iqmp = (q^-1) mod p */
800 if (mp_invmod(key->rsakey->q, key->rsakey->p, &iqmp) != MP_OKAY) {
801 fprintf(stderr, "Bignum error for iqmp\n");
802 goto error;
803 }
804
805 extrablob = buf_new(2000);
806 buf_putmpint(extrablob, &dmp1);
807 buf_putmpint(extrablob, &dmq1);
808 buf_putmpint(extrablob, &iqmp);
809 buf_setpos(extrablob, 0);
810 mp_clear(&dmp1);
811 mp_clear(&dmq1);
812 mp_clear(&iqmp);
813 mp_clear(&tmpval);
814
815 /* dmp1 */
816 numbers[6].bytes = buf_getint(extrablob);
817 numbers[6].start = buf_getptr(extrablob, numbers[6].bytes);
818 buf_incrpos(extrablob, numbers[6].bytes);
819
820 /* dmq1 */
821 numbers[7].bytes = buf_getint(extrablob);
822 numbers[7].start = buf_getptr(extrablob, numbers[7].bytes);
823 buf_incrpos(extrablob, numbers[7].bytes);
824
825 /* iqmp */
826 numbers[8].bytes = buf_getint(extrablob);
827 numbers[8].start = buf_getptr(extrablob, numbers[8].bytes);
828 buf_incrpos(extrablob, numbers[8].bytes);
829
830 nnumbers = 9;
831 header = "-----BEGIN RSA PRIVATE KEY-----\n";
832 footer = "-----END RSA PRIVATE KEY-----\n";
833 }
834 #endif /* DROPBEAR_RSA */
835
836 #ifdef DROPBEAR_DSS
837 if (keytype == DROPBEAR_SIGNKEY_DSS) {
838
839 /* p */
840 numbers[1].bytes = buf_getint(keyblob);
841 numbers[1].start = buf_getptr(keyblob, numbers[1].bytes);
842 buf_incrpos(keyblob, numbers[1].bytes);
843
844 /* q */
845 numbers[2].bytes = buf_getint(keyblob);
846 numbers[2].start = buf_getptr(keyblob, numbers[2].bytes);
847 buf_incrpos(keyblob, numbers[2].bytes);
848
849 /* g */
850 numbers[3].bytes = buf_getint(keyblob);
851 numbers[3].start = buf_getptr(keyblob, numbers[3].bytes);
852 buf_incrpos(keyblob, numbers[3].bytes);
853
854 /* y */
855 numbers[4].bytes = buf_getint(keyblob);
856 numbers[4].start = buf_getptr(keyblob, numbers[4].bytes);
857 buf_incrpos(keyblob, numbers[4].bytes);
858
859 /* x */
860 numbers[5].bytes = buf_getint(keyblob);
861 numbers[5].start = buf_getptr(keyblob, numbers[5].bytes);
862 buf_incrpos(keyblob, numbers[5].bytes);
863
864 nnumbers = 6;
865 header = "-----BEGIN DSA PRIVATE KEY-----\n";
866 footer = "-----END DSA PRIVATE KEY-----\n";
867 }
868 #endif /* DROPBEAR_DSS */
869
870 /*
871 * Now count up the total size of the ASN.1 encoded integers,
872 * so as to determine the length of the containing SEQUENCE.
873 */
874 len = 0;
875 for (i = 0; i < nnumbers; i++) {
876 len += ber_write_id_len(NULL, 2, numbers[i].bytes, 0);
877 len += numbers[i].bytes;
878 }
879 seqlen = len;
880 /* Now add on the SEQUENCE header. */
881 len += ber_write_id_len(NULL, 16, seqlen, ASN1_CONSTRUCTED);
882 /* Round up to the cipher block size, ensuring we have at least one
883 * byte of padding (see below). */
884 outlen = len;
885 if (passphrase)
886 outlen = (outlen+8) &~ 7;
887
888 /*
889 * Now we know how big outblob needs to be. Allocate it.
890 */
891 outblob = (unsigned char*)m_malloc(outlen);
892
893 /*
894 * And write the data into it.
895 */
896 pos = 0;
897 pos += ber_write_id_len(outblob+pos, 16, seqlen, ASN1_CONSTRUCTED);
898 for (i = 0; i < nnumbers; i++) {
899 pos += ber_write_id_len(outblob+pos, 2, numbers[i].bytes, 0);
900 memcpy(outblob+pos, numbers[i].start, numbers[i].bytes);
901 pos += numbers[i].bytes;
902 }
903
904 /*
905 * Padding on OpenSSH keys is deterministic. The number of
906 * padding bytes is always more than zero, and always at most
907 * the cipher block length. The value of each padding byte is
908 * equal to the number of padding bytes. So a plaintext that's
909 * an exact multiple of the block size will be padded with 08
910 * 08 08 08 08 08 08 08 (assuming a 64-bit block cipher); a
911 * plaintext one byte less than a multiple of the block size
912 * will be padded with just 01.
913 *
914 * This enables the OpenSSL key decryption function to strip
915 * off the padding algorithmically and return the unpadded
916 * plaintext to the next layer: it looks at the final byte, and
917 * then expects to find that many bytes at the end of the data
918 * with the same value. Those are all removed and the rest is
919 * returned.
920 */
921 dropbear_assert(pos == len);
922 while (pos < outlen) {
923 outblob[pos++] = outlen - len;
924 }
925
926 /*
927 * Encrypt the key.
928 */
929 if (passphrase) {
930 fprintf(stderr, "Encrypted keys aren't supported currently\n");
931 goto error;
932 }
933
934 /*
935 * And save it. We'll use Unix line endings just in case it's
936 * subsequently transferred in binary mode.
937 */
938 if (strlen(filename) == 1 && filename[0] == '-') {
939 fp = stdout;
940 } else {
941 fp = fopen(filename, "wb"); /* ensure Unix line endings */
942 }
943 if (!fp) {
944 fprintf(stderr, "Failed opening output file\n");
945 goto error;
946 }
947 fputs(header, fp);
948 base64_encode_fp(fp, outblob, outlen, 64);
949 fputs(footer, fp);
950 fclose(fp);
951 ret = 1;
952
953 error:
954 if (outblob) {
955 memset(outblob, 0, outlen);
956 m_free(outblob);
957 }
958 if (keyblob) {
959 buf_burn(keyblob);
960 buf_free(keyblob);
961 }
962 if (extrablob) {
963 buf_burn(extrablob);
964 buf_free(extrablob);
965 }
966 return ret;
967 }
968
969 #if 0
970 /* XXX TODO ssh.com stuff isn't going yet */
971
972 /* ----------------------------------------------------------------------
973 * Code to read ssh.com private keys.
974 */
975
976 /*
977 * The format of the base64 blob is largely ssh2-packet-formatted,
978 * except that mpints are a bit different: they're more like the
979 * old ssh1 mpint. You have a 32-bit bit count N, followed by
980 * (N+7)/8 bytes of data.
981 *
982 * So. The blob contains:
983 *
984 * - uint32 0x3f6ff9eb (magic number)
985 * - uint32 size (total blob size)
986 * - string key-type (see below)
987 * - string cipher-type (tells you if key is encrypted)
988 * - string encrypted-blob
989 *
990 * (The first size field includes the size field itself and the
991 * magic number before it. All other size fields are ordinary ssh2
992 * strings, so the size field indicates how much data is to
993 * _follow_.)
994 *
995 * The encrypted blob, once decrypted, contains a single string
996 * which in turn contains the payload. (This allows padding to be
997 * added after that string while still making it clear where the
998 * real payload ends. Also it probably makes for a reasonable
999 * decryption check.)
1000 *
1001 * The payload blob, for an RSA key, contains:
1002 * - mpint e
1003 * - mpint d
1004 * - mpint n (yes, the public and private stuff is intermixed)
1005 * - mpint u (presumably inverse of p mod q)
1006 * - mpint p (p is the smaller prime)
1007 * - mpint q (q is the larger)
1008 *
1009 * For a DSA key, the payload blob contains:
1010 * - uint32 0
1011 * - mpint p
1012 * - mpint g
1013 * - mpint q
1014 * - mpint y
1015 * - mpint x
1016 *
1017 * Alternatively, if the parameters are `predefined', that
1018 * (0,p,g,q) sequence can be replaced by a uint32 1 and a string
1019 * containing some predefined parameter specification. *shudder*,
1020 * but I doubt we'll encounter this in real life.
1021 *
1022 * The key type strings are ghastly. The RSA key I looked at had a
1023 * type string of
1024 *
1025 * `if-modn{sign{rsa-pkcs1-sha1},encrypt{rsa-pkcs1v2-oaep}}'
1026 *
1027 * and the DSA key wasn't much better:
1028 *
1029 * `dl-modp{sign{dsa-nist-sha1},dh{plain}}'
1030 *
1031 * It isn't clear that these will always be the same. I think it
1032 * might be wise just to look at the `if-modn{sign{rsa' and
1033 * `dl-modp{sign{dsa' prefixes.
1034 *
1035 * Finally, the encryption. The cipher-type string appears to be
1036 * either `none' or `3des-cbc'. Looks as if this is SSH2-style
1037 * 3des-cbc (i.e. outer cbc rather than inner). The key is created
1038 * from the passphrase by means of yet another hashing faff:
1039 *
1040 * - first 16 bytes are MD5(passphrase)
1041 * - next 16 bytes are MD5(passphrase || first 16 bytes)
1042 * - if there were more, they'd be MD5(passphrase || first 32),
1043 * and so on.
1044 */
1045
1046 #define SSHCOM_MAGIC_NUMBER 0x3f6ff9eb
1047
1048 struct sshcom_key {
1049 char comment[256]; /* allowing any length is overkill */
1050 unsigned char *keyblob;
1051 int keyblob_len, keyblob_size;
1052 };
1053
1054 static struct sshcom_key *load_sshcom_key(const char *filename)
1055 {
1056 struct sshcom_key *ret;
1057 FILE *fp;
1058 char buffer[256];
1059 int len;
1060 char *errmsg, *p;
1061 int headers_done;
1062 char base64_bit[4];
1063 int base64_chars = 0;
1064
1065 ret = snew(struct sshcom_key);
1066 ret->comment[0] = '\0';
1067 ret->keyblob = NULL;
1068 ret->keyblob_len = ret->keyblob_size = 0;
1069
1070 fp = fopen(filename, "r");
1071 if (!fp) {
1072 errmsg = "Unable to open key file";
1073 goto error;
1074 }
1075 if (!fgets(buffer, sizeof(buffer), fp) ||
1076 0 != strcmp(buffer, "---- BEGIN SSH2 ENCRYPTED PRIVATE KEY ----\n")) {
1077 errmsg = "File does not begin with ssh.com key header";
1078 goto error;
1079 }
1080
1081 headers_done = 0;
1082 while (1) {
1083 if (!fgets(buffer, sizeof(buffer), fp)) {
1084 errmsg = "Unexpected end of file";
1085 goto error;
1086 }
1087 if (!strcmp(buffer, "---- END SSH2 ENCRYPTED PRIVATE KEY ----\n"))
1088 break; /* done */
1089 if ((p = strchr(buffer, ':')) != NULL) {
1090 if (headers_done) {
1091 errmsg = "Header found in body of key data";
1092 goto error;
1093 }
1094 *p++ = '\0';
1095 while (*p && isspace((unsigned char)*p)) p++;
1096 /*
1097 * Header lines can end in a trailing backslash for
1098 * continuation.
1099 */
1100 while ((len = strlen(p)) > (int)(sizeof(buffer) - (p-buffer) -1) ||
1101 p[len-1] != '\n' || p[len-2] == '\\') {
1102 if (len > (int)((p-buffer) + sizeof(buffer)-2)) {
1103 errmsg = "Header line too long to deal with";
1104 goto error;
1105 }
1106 if (!fgets(p+len-2, sizeof(buffer)-(p-buffer)-(len-2), fp)) {
1107 errmsg = "Unexpected end of file";
1108 goto error;
1109 }
1110 }
1111 p[strcspn(p, "\n")] = '\0';
1112 if (!strcmp(buffer, "Comment")) {
1113 /* Strip quotes in comment if present. */
1114 if (p[0] == '"' && p[strlen(p)-1] == '"') {
1115 p++;
1116 p[strlen(p)-1] = '\0';
1117 }
1118 strncpy(ret->comment, p, sizeof(ret->comment));
1119 ret->comment[sizeof(ret->comment)-1] = '\0';
1120 }
1121 } else {
1122 headers_done = 1;
1123
1124 p = buffer;
1125 while (isbase64(*p)) {
1126 base64_bit[base64_chars++] = *p;
1127 if (base64_chars == 4) {
1128 unsigned char out[3];
1129
1130 base64_chars = 0;
1131
1132 len = base64_decode_atom(base64_bit, out);
1133
1134 if (len <= 0) {
1135 errmsg = "Invalid base64 encoding";
1136 goto error;
1137 }
1138
1139 if (ret->keyblob_len + len > ret->keyblob_size) {
1140 ret->keyblob_size = ret->keyblob_len + len + 256;
1141 ret->keyblob = sresize(ret->keyblob, ret->keyblob_size,
1142 unsigned char);
1143 }
1144
1145 memcpy(ret->keyblob + ret->keyblob_len, out, len);
1146 ret->keyblob_len += len;
1147 }
1148
1149 p++;
1150 }
1151 }
1152 }
1153
1154 if (ret->keyblob_len == 0 || !ret->keyblob) {
1155 errmsg = "Key body not present";
1156 goto error;
1157 }
1158
1159 return ret;
1160
1161 error:
1162 if (ret) {
1163 if (ret->keyblob) {
1164 memset(ret->keyblob, 0, ret->keyblob_size);
1165 m_free(ret->keyblob);
1166 }
1167 memset(&ret, 0, sizeof(ret));
1168 m_free(ret);
1169 }
1170 return NULL;
1171 }
1172
1173 int sshcom_encrypted(const char *filename, char **comment)
1174 {
1175 struct sshcom_key *key = load_sshcom_key(filename);
1176 int pos, len, answer;
1177
1178 *comment = NULL;
1179 if (!key)
1180 return 0;
1181
1182 /*
1183 * Check magic number.
1184 */
1185 if (GET_32BIT(key->keyblob) != 0x3f6ff9eb)
1186 return 0; /* key is invalid */
1187
1188 /*
1189 * Find the cipher-type string.
1190 */
1191 answer = 0;
1192 pos = 8;
1193 if (key->keyblob_len < pos+4)
1194 goto done; /* key is far too short */
1195 pos += 4 + GET_32BIT(key->keyblob + pos); /* skip key type */
1196 if (key->keyblob_len < pos+4)
1197 goto done; /* key is far too short */
1198 len = GET_32BIT(key->keyblob + pos); /* find cipher-type length */
1199 if (key->keyblob_len < pos+4+len)
1200 goto done; /* cipher type string is incomplete */
1201 if (len != 4 || 0 != memcmp(key->keyblob + pos + 4, "none", 4))
1202 answer = 1;
1203
1204 done:
1205 *comment = dupstr(key->comment);
1206 memset(key->keyblob, 0, key->keyblob_size);
1207 m_free(key->keyblob);
1208 memset(&key, 0, sizeof(key));
1209 m_free(key);
1210 return answer;
1211 }
1212
1213 static int sshcom_read_mpint(void *data, int len, struct mpint_pos *ret)
1214 {
1215 int bits;
1216 int bytes;
1217 unsigned char *d = (unsigned char *) data;
1218
1219 if (len < 4)
1220 goto error;
1221 bits = GET_32BIT(d);
1222
1223 bytes = (bits + 7) / 8;
1224 if (len < 4+bytes)
1225 goto error;
1226
1227 ret->start = d + 4;
1228 ret->bytes = bytes;
1229 return bytes+4;
1230
1231 error:
1232 ret->start = NULL;
1233 ret->bytes = -1;
1234 return len; /* ensure further calls fail as well */
1235 }
1236
1237 static int sshcom_put_mpint(void *target, void *data, int len)
1238 {
1239 unsigned char *d = (unsigned char *)target;
1240 unsigned char *i = (unsigned char *)data;
1241 int bits = len * 8 - 1;
1242
1243 while (bits > 0) {
1244 if (*i & (1 << (bits & 7)))
1245 break;
1246 if (!(bits-- & 7))
1247 i++, len--;
1248 }
1249
1250 PUT_32BIT(d, bits+1);
1251 memcpy(d+4, i, len);
1252 return len+4;
1253 }
1254
1255 sign_key *sshcom_read(const char *filename, char *passphrase)
1256 {
1257 struct sshcom_key *key = load_sshcom_key(filename);
1258 char *errmsg;
1259 int pos, len;
1260 const char prefix_rsa[] = "if-modn{sign{rsa";
1261 const char prefix_dsa[] = "dl-modp{sign{dsa";
1262 enum { RSA, DSA } type;
1263 int encrypted;
1264 char *ciphertext;
1265 int cipherlen;
1266 struct ssh2_userkey *ret = NULL, *retkey;
1267 const struct ssh_signkey *alg;
1268 unsigned char *blob = NULL;
1269 int blobsize, publen, privlen;
1270
1271 if (!key)
1272 return NULL;
1273
1274 /*
1275 * Check magic number.
1276 */
1277 if (GET_32BIT(key->keyblob) != SSHCOM_MAGIC_NUMBER) {
1278 errmsg = "Key does not begin with magic number";
1279 goto error;
1280 }
1281
1282 /*
1283 * Determine the key type.
1284 */
1285 pos = 8;
1286 if (key->keyblob_len < pos+4 ||
1287 (len = GET_32BIT(key->keyblob + pos)) > key->keyblob_len - pos - 4) {
1288 errmsg = "Key blob does not contain a key type string";
1289 goto error;
1290 }
1291 if (len > sizeof(prefix_rsa) - 1 &&
1292 !memcmp(key->keyblob+pos+4, prefix_rsa, sizeof(prefix_rsa) - 1)) {
1293 type = RSA;
1294 } else if (len > sizeof(prefix_dsa) - 1 &&
1295 !memcmp(key->keyblob+pos+4, prefix_dsa, sizeof(prefix_dsa) - 1)) {
1296 type = DSA;
1297 } else {
1298 errmsg = "Key is of unknown type";
1299 goto error;
1300 }
1301 pos += 4+len;
1302
1303 /*
1304 * Determine the cipher type.
1305 */
1306 if (key->keyblob_len < pos+4 ||
1307 (len = GET_32BIT(key->keyblob + pos)) > key->keyblob_len - pos - 4) {
1308 errmsg = "Key blob does not contain a cipher type string";
1309 goto error;
1310 }
1311 if (len == 4 && !memcmp(key->keyblob+pos+4, "none", 4))
1312 encrypted = 0;
1313 else if (len == 8 && !memcmp(key->keyblob+pos+4, "3des-cbc", 8))
1314 encrypted = 1;
1315 else {
1316 errmsg = "Key encryption is of unknown type";
1317 goto error;
1318 }
1319 pos += 4+len;
1320
1321 /*
1322 * Get hold of the encrypted part of the key.
1323 */
1324 if (key->keyblob_len < pos+4 ||
1325 (len = GET_32BIT(key->keyblob + pos)) > key->keyblob_len - pos - 4) {
1326 errmsg = "Key blob does not contain actual key data";
1327 goto error;
1328 }
1329 ciphertext = (char *)key->keyblob + pos + 4;
1330 cipherlen = len;
1331 if (cipherlen == 0) {
1332 errmsg = "Length of key data is zero";
1333 goto error;
1334 }
1335
1336 /*
1337 * Decrypt it if necessary.
1338 */
1339 if (encrypted) {
1340 /*
1341 * Derive encryption key from passphrase and iv/salt:
1342 *
1343 * - let block A equal MD5(passphrase)
1344 * - let block B equal MD5(passphrase || A)
1345 * - block C would be MD5(passphrase || A || B) and so on
1346 * - encryption key is the first N bytes of A || B
1347 */
1348 struct MD5Context md5c;
1349 unsigned char keybuf[32], iv[8];
1350
1351 if (cipherlen % 8 != 0) {
1352 errmsg = "Encrypted part of key is not a multiple of cipher block"
1353 " size";
1354 goto error;
1355 }
1356
1357 MD5Init(&md5c);
1358 MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase));
1359 MD5Final(keybuf, &md5c);
1360
1361 MD5Init(&md5c);
1362 MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase));
1363 MD5Update(&md5c, keybuf, 16);
1364 MD5Final(keybuf+16, &md5c);
1365
1366 /*
1367 * Now decrypt the key blob.
1368 */
1369 memset(iv, 0, sizeof(iv));
1370 des3_decrypt_pubkey_ossh(keybuf, iv, (unsigned char *)ciphertext,
1371 cipherlen);
1372
1373 memset(&md5c, 0, sizeof(md5c));
1374 memset(keybuf, 0, sizeof(keybuf));
1375
1376 /*
1377 * Hereafter we return WRONG_PASSPHRASE for any parsing
1378 * error. (But only if we've just tried to decrypt it!
1379 * Returning WRONG_PASSPHRASE for an unencrypted key is
1380 * automatic doom.)
1381 */
1382 if (encrypted)
1383 ret = SSH2_WRONG_PASSPHRASE;
1384 }
1385
1386 /*
1387 * Strip away the containing string to get to the real meat.
1388 */
1389 len = GET_32BIT(ciphertext);
1390 if (len > cipherlen-4) {
1391 errmsg = "containing string was ill-formed";
1392 goto error;
1393 }
1394 ciphertext += 4;
1395 cipherlen = len;
1396
1397 /*
1398 * Now we break down into RSA versus DSA. In either case we'll
1399 * construct public and private blobs in our own format, and
1400 * end up feeding them to alg->createkey().
1401 */
1402 blobsize = cipherlen + 256;
1403 blob = snewn(blobsize, unsigned char);
1404 privlen = 0;
1405 if (type == RSA) {
1406 struct mpint_pos n, e, d, u, p, q;
1407 int pos = 0;
1408 pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &e);
1409 pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &d);
1410 pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &n);
1411 pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &u);
1412 pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &p);
1413 pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &q);
1414 if (!q.start) {
1415 errmsg = "key data did not contain six integers";
1416 goto error;
1417 }
1418
1419 alg = &ssh_rsa;
1420 pos = 0;
1421 pos += put_string(blob+pos, "ssh-rsa", 7);
1422 pos += put_mp(blob+pos, e.start, e.bytes);
1423 pos += put_mp(blob+pos, n.start, n.bytes);
1424 publen = pos;
1425 pos += put_string(blob+pos, d.start, d.bytes);
1426 pos += put_mp(blob+pos, q.start, q.bytes);
1427 pos += put_mp(blob+pos, p.start, p.bytes);
1428 pos += put_mp(blob+pos, u.start, u.bytes);
1429 privlen = pos - publen;
1430 } else if (type == DSA) {
1431 struct mpint_pos p, q, g, x, y;
1432 int pos = 4;
1433 if (GET_32BIT(ciphertext) != 0) {
1434 errmsg = "predefined DSA parameters not supported";
1435 goto error;
1436 }
1437 pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &p);
1438 pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &g);
1439 pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &q);
1440 pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &y);
1441 pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &x);
1442 if (!x.start) {
1443 errmsg = "key data did not contain five integers";
1444 goto error;
1445 }
1446
1447 alg = &ssh_dss;
1448 pos = 0;
1449 pos += put_string(blob+pos, "ssh-dss", 7);
1450 pos += put_mp(blob+pos, p.start, p.bytes);
1451 pos += put_mp(blob+pos, q.start, q.bytes);
1452 pos += put_mp(blob+pos, g.start, g.bytes);
1453 pos += put_mp(blob+pos, y.start, y.bytes);
1454 publen = pos;
1455 pos += put_mp(blob+pos, x.start, x.bytes);
1456 privlen = pos - publen;
1457 }
1458
1459 dropbear_assert(privlen > 0); /* should have bombed by now if not */
1460
1461 retkey = snew(struct ssh2_userkey);
1462 retkey->alg = alg;
1463 retkey->data = alg->createkey(blob, publen, blob+publen, privlen);
1464 if (!retkey->data) {
1465 m_free(retkey);
1466 errmsg = "unable to create key data structure";
1467 goto error;
1468 }
1469 retkey->comment = dupstr(key->comment);
1470
1471 errmsg = NULL; /* no error */
1472 ret = retkey;
1473
1474 error:
1475 if (blob) {
1476 memset(blob, 0, blobsize);
1477 m_free(blob);
1478 }
1479 memset(key->keyblob, 0, key->keyblob_size);
1480 m_free(key->keyblob);
1481 memset(&key, 0, sizeof(key));
1482 m_free(key);
1483 return ret;
1484 }
1485
1486 int sshcom_write(const char *filename, sign_key *key,
1487 char *passphrase)
1488 {
1489 unsigned char *pubblob, *privblob;
1490 int publen, privlen;
1491 unsigned char *outblob;
1492 int outlen;
1493 struct mpint_pos numbers[6];
1494 int nnumbers, initial_zero, pos, lenpos, i;
1495 char *type;
1496 char *ciphertext;
1497 int cipherlen;
1498 int ret = 0;
1499 FILE *fp;
1500
1501 /*
1502 * Fetch the key blobs.
1503 */
1504 pubblob = key->alg->public_blob(key->data, &publen);
1505 privblob = key->alg->private_blob(key->data, &privlen);
1506 outblob = NULL;
1507
1508 /*
1509 * Find the sequence of integers to be encoded into the OpenSSH
1510 * key blob, and also decide on the header line.
1511 */
1512 if (key->alg == &ssh_rsa) {
1513 int pos;
1514 struct mpint_pos n, e, d, p, q, iqmp;
1515
1516 pos = 4 + GET_32BIT(pubblob);
1517 pos += ssh2_read_mpint(pubblob+pos, publen-pos, &e);
1518 pos += ssh2_read_mpint(pubblob+pos, publen-pos, &n);
1519 pos = 0;
1520 pos += ssh2_read_mpint(privblob+pos, privlen-pos, &d);
1521 pos += ssh2_read_mpint(privblob+pos, privlen-pos, &p);
1522 pos += ssh2_read_mpint(privblob+pos, privlen-pos, &q);
1523 pos += ssh2_read_mpint(privblob+pos, privlen-pos, &iqmp);
1524
1525 dropbear_assert(e.start && iqmp.start); /* can't go wrong */
1526
1527 numbers[0] = e;
1528 numbers[1] = d;
1529 numbers[2] = n;
1530 numbers[3] = iqmp;
1531 numbers[4] = q;
1532 numbers[5] = p;
1533
1534 nnumbers = 6;
1535 initial_zero = 0;
1536 type = "if-modn{sign{rsa-pkcs1-sha1},encrypt{rsa-pkcs1v2-oaep}}";
1537 } else if (key->alg == &ssh_dss) {
1538 int pos;
1539 struct mpint_pos p, q, g, y, x;
1540
1541 pos = 4 + GET_32BIT(pubblob);
1542 pos += ssh2_read_mpint(pubblob+pos, publen-pos, &p);
1543 pos += ssh2_read_mpint(pubblob+pos, publen-pos, &q);
1544 pos += ssh2_read_mpint(pubblob+pos, publen-pos, &g);
1545 pos += ssh2_read_mpint(pubblob+pos, publen-pos, &y);
1546 pos = 0;
1547 pos += ssh2_read_mpint(privblob+pos, privlen-pos, &x);
1548
1549 dropbear_assert(y.start && x.start); /* can't go wrong */
1550
1551 numbers[0] = p;
1552 numbers[1] = g;
1553 numbers[2] = q;
1554 numbers[3] = y;
1555 numbers[4] = x;
1556
1557 nnumbers = 5;
1558 initial_zero = 1;
1559 type = "dl-modp{sign{dsa-nist-sha1},dh{plain}}";
1560 } else {
1561 dropbear_assert(0); /* zoinks! */
1562 }
1563
1564 /*
1565 * Total size of key blob will be somewhere under 512 plus
1566 * combined length of integers. We'll calculate the more
1567 * precise size as we construct the blob.
1568 */
1569 outlen = 512;
1570 for (i = 0; i < nnumbers; i++)
1571 outlen += 4 + numbers[i].bytes;
1572 outblob = snewn(outlen, unsigned char);
1573
1574 /*
1575 * Create the unencrypted key blob.
1576 */
1577 pos = 0;
1578 PUT_32BIT(outblob+pos, SSHCOM_MAGIC_NUMBER); pos += 4;
1579 pos += 4; /* length field, fill in later */
1580 pos += put_string(outblob+pos, type, strlen(type));
1581 {
1582 char *ciphertype = passphrase ? "3des-cbc" : "none";
1583 pos += put_string(outblob+pos, ciphertype, strlen(ciphertype));
1584 }
1585 lenpos = pos; /* remember this position */
1586 pos += 4; /* encrypted-blob size */
1587 pos += 4; /* encrypted-payload size */
1588 if (initial_zero) {
1589 PUT_32BIT(outblob+pos, 0);
1590 pos += 4;
1591 }
1592 for (i = 0; i < nnumbers; i++)
1593 pos += sshcom_put_mpint(outblob+pos,
1594 numbers[i].start, numbers[i].bytes);
1595 /* Now wrap up the encrypted payload. */
1596 PUT_32BIT(outblob+lenpos+4, pos - (lenpos+8));
1597 /* Pad encrypted blob to a multiple of cipher block size. */
1598 if (passphrase) {
1599 int padding = -(pos - (lenpos+4)) & 7;
1600 while (padding--)
1601 outblob[pos++] = random_byte();
1602 }
1603 ciphertext = (char *)outblob+lenpos+4;
1604 cipherlen = pos - (lenpos+4);
1605 dropbear_assert(!passphrase || cipherlen % 8 == 0);
1606 /* Wrap up the encrypted blob string. */
1607 PUT_32BIT(outblob+lenpos, cipherlen);
1608 /* And finally fill in the total length field. */
1609 PUT_32BIT(outblob+4, pos);
1610
1611 dropbear_assert(pos < outlen);
1612
1613 /*
1614 * Encrypt the key.
1615 */
1616 if (passphrase) {
1617 /*
1618 * Derive encryption key from passphrase and iv/salt:
1619 *
1620 * - let block A equal MD5(passphrase)
1621 * - let block B equal MD5(passphrase || A)
1622 * - block C would be MD5(passphrase || A || B) and so on
1623 * - encryption key is the first N bytes of A || B
1624 */
1625 struct MD5Context md5c;
1626 unsigned char keybuf[32], iv[8];
1627
1628 MD5Init(&md5c);
1629 MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase));
1630 MD5Final(keybuf, &md5c);
1631
1632 MD5Init(&md5c);
1633 MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase));
1634 MD5Update(&md5c, keybuf, 16);
1635 MD5Final(keybuf+16, &md5c);
1636
1637 /*
1638 * Now decrypt the key blob.
1639 */
1640 memset(iv, 0, sizeof(iv));
1641 des3_encrypt_pubkey_ossh(keybuf, iv, (unsigned char *)ciphertext,
1642 cipherlen);
1643
1644 memset(&md5c, 0, sizeof(md5c));
1645 memset(keybuf, 0, sizeof(keybuf));
1646 }
1647
1648 /*
1649 * And save it. We'll use Unix line endings just in case it's
1650 * subsequently transferred in binary mode.
1651 */
1652 fp = fopen(filename, "wb"); /* ensure Unix line endings */
1653 if (!fp)
1654 goto error;
1655 fputs("---- BEGIN SSH2 ENCRYPTED PRIVATE KEY ----\n", fp);
1656 fprintf(fp, "Comment: \"");
1657 /*
1658 * Comment header is broken with backslash-newline if it goes
1659 * over 70 chars. Although it's surrounded by quotes, it
1660 * _doesn't_ escape backslashes or quotes within the string.
1661 * Don't ask me, I didn't design it.
1662 */
1663 {
1664 int slen = 60; /* starts at 60 due to "Comment: " */
1665 char *c = key->comment;
1666 while ((int)strlen(c) > slen) {
1667 fprintf(fp, "%.*s\\\n", slen, c);
1668 c += slen;
1669 slen = 70; /* allow 70 chars on subsequent lines */
1670 }
1671 fprintf(fp, "%s\"\n", c);
1672 }
1673 base64_encode_fp(fp, outblob, pos, 70);
1674 fputs("---- END SSH2 ENCRYPTED PRIVATE KEY ----\n", fp);
1675 fclose(fp);
1676 ret = 1;
1677
1678 error:
1679 if (outblob) {
1680 memset(outblob, 0, outlen);
1681 m_free(outblob);
1682 }
1683 if (privblob) {
1684 memset(privblob, 0, privlen);
1685 m_free(privblob);
1686 }
1687 if (pubblob) {
1688 memset(pubblob, 0, publen);
1689 m_free(pubblob);
1690 }
1691 return ret;
1692 }
1693 #endif /* ssh.com stuff disabled */