Mercurial > dropbear
comparison libtomcrypt/src/hashes/rmd256.c @ 382:0cbe8f6dbf9e
propagate from branch 'au.asn.ucc.matt.ltc.dropbear' (head 2af22fb4e878750b88f80f90d439b316d229796f)
to branch 'au.asn.ucc.matt.dropbear' (head 02c413252c90e9de8e03d91e9939dde3029f5c0a)
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Thu, 11 Jan 2007 02:41:05 +0000 |
parents | |
children | f849a5ca2efc |
comparison
equal
deleted
inserted
replaced
379:b66a00272a90 | 382:0cbe8f6dbf9e |
---|---|
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis | |
2 * | |
3 * LibTomCrypt is a library that provides various cryptographic | |
4 * algorithms in a highly modular and flexible manner. | |
5 * | |
6 * The library is free for all purposes without any express | |
7 * guarantee it works. | |
8 * | |
9 * Tom St Denis, [email protected], http://libtomcrypt.com | |
10 */ | |
11 #include "tomcrypt.h" | |
12 | |
13 /** | |
14 @param rmd256.c | |
15 RMD256 Hash function | |
16 */ | |
17 | |
18 #ifdef RIPEMD256 | |
19 | |
20 const struct ltc_hash_descriptor rmd256_desc = | |
21 { | |
22 "rmd256", | |
23 8, | |
24 16, | |
25 64, | |
26 | |
27 /* OID */ | |
28 { 1, 3, 36, 3, 2, 3 }, | |
29 6, | |
30 | |
31 &rmd256_init, | |
32 &rmd256_process, | |
33 &rmd256_done, | |
34 &rmd256_test, | |
35 NULL | |
36 }; | |
37 | |
38 /* the four basic functions F(), G() and H() */ | |
39 #define F(x, y, z) ((x) ^ (y) ^ (z)) | |
40 #define G(x, y, z) (((x) & (y)) | (~(x) & (z))) | |
41 #define H(x, y, z) (((x) | ~(y)) ^ (z)) | |
42 #define I(x, y, z) (((x) & (z)) | ((y) & ~(z))) | |
43 | |
44 /* the eight basic operations FF() through III() */ | |
45 #define FF(a, b, c, d, x, s) \ | |
46 (a) += F((b), (c), (d)) + (x);\ | |
47 (a) = ROLc((a), (s)); | |
48 | |
49 #define GG(a, b, c, d, x, s) \ | |
50 (a) += G((b), (c), (d)) + (x) + 0x5a827999UL;\ | |
51 (a) = ROLc((a), (s)); | |
52 | |
53 #define HH(a, b, c, d, x, s) \ | |
54 (a) += H((b), (c), (d)) + (x) + 0x6ed9eba1UL;\ | |
55 (a) = ROLc((a), (s)); | |
56 | |
57 #define II(a, b, c, d, x, s) \ | |
58 (a) += I((b), (c), (d)) + (x) + 0x8f1bbcdcUL;\ | |
59 (a) = ROLc((a), (s)); | |
60 | |
61 #define FFF(a, b, c, d, x, s) \ | |
62 (a) += F((b), (c), (d)) + (x);\ | |
63 (a) = ROLc((a), (s)); | |
64 | |
65 #define GGG(a, b, c, d, x, s) \ | |
66 (a) += G((b), (c), (d)) + (x) + 0x6d703ef3UL;\ | |
67 (a) = ROLc((a), (s)); | |
68 | |
69 #define HHH(a, b, c, d, x, s) \ | |
70 (a) += H((b), (c), (d)) + (x) + 0x5c4dd124UL;\ | |
71 (a) = ROLc((a), (s)); | |
72 | |
73 #define III(a, b, c, d, x, s) \ | |
74 (a) += I((b), (c), (d)) + (x) + 0x50a28be6UL;\ | |
75 (a) = ROLc((a), (s)); | |
76 | |
77 #ifdef LTC_CLEAN_STACK | |
78 static int _rmd256_compress(hash_state *md, unsigned char *buf) | |
79 #else | |
80 static int rmd256_compress(hash_state *md, unsigned char *buf) | |
81 #endif | |
82 { | |
83 ulong32 aa,bb,cc,dd,aaa,bbb,ccc,ddd,tmp,X[16]; | |
84 int i; | |
85 | |
86 /* load words X */ | |
87 for (i = 0; i < 16; i++){ | |
88 LOAD32L(X[i], buf + (4 * i)); | |
89 } | |
90 | |
91 /* load state */ | |
92 aa = md->rmd256.state[0]; | |
93 bb = md->rmd256.state[1]; | |
94 cc = md->rmd256.state[2]; | |
95 dd = md->rmd256.state[3]; | |
96 aaa = md->rmd256.state[4]; | |
97 bbb = md->rmd256.state[5]; | |
98 ccc = md->rmd256.state[6]; | |
99 ddd = md->rmd256.state[7]; | |
100 | |
101 /* round 1 */ | |
102 FF(aa, bb, cc, dd, X[ 0], 11); | |
103 FF(dd, aa, bb, cc, X[ 1], 14); | |
104 FF(cc, dd, aa, bb, X[ 2], 15); | |
105 FF(bb, cc, dd, aa, X[ 3], 12); | |
106 FF(aa, bb, cc, dd, X[ 4], 5); | |
107 FF(dd, aa, bb, cc, X[ 5], 8); | |
108 FF(cc, dd, aa, bb, X[ 6], 7); | |
109 FF(bb, cc, dd, aa, X[ 7], 9); | |
110 FF(aa, bb, cc, dd, X[ 8], 11); | |
111 FF(dd, aa, bb, cc, X[ 9], 13); | |
112 FF(cc, dd, aa, bb, X[10], 14); | |
113 FF(bb, cc, dd, aa, X[11], 15); | |
114 FF(aa, bb, cc, dd, X[12], 6); | |
115 FF(dd, aa, bb, cc, X[13], 7); | |
116 FF(cc, dd, aa, bb, X[14], 9); | |
117 FF(bb, cc, dd, aa, X[15], 8); | |
118 | |
119 /* parallel round 1 */ | |
120 III(aaa, bbb, ccc, ddd, X[ 5], 8); | |
121 III(ddd, aaa, bbb, ccc, X[14], 9); | |
122 III(ccc, ddd, aaa, bbb, X[ 7], 9); | |
123 III(bbb, ccc, ddd, aaa, X[ 0], 11); | |
124 III(aaa, bbb, ccc, ddd, X[ 9], 13); | |
125 III(ddd, aaa, bbb, ccc, X[ 2], 15); | |
126 III(ccc, ddd, aaa, bbb, X[11], 15); | |
127 III(bbb, ccc, ddd, aaa, X[ 4], 5); | |
128 III(aaa, bbb, ccc, ddd, X[13], 7); | |
129 III(ddd, aaa, bbb, ccc, X[ 6], 7); | |
130 III(ccc, ddd, aaa, bbb, X[15], 8); | |
131 III(bbb, ccc, ddd, aaa, X[ 8], 11); | |
132 III(aaa, bbb, ccc, ddd, X[ 1], 14); | |
133 III(ddd, aaa, bbb, ccc, X[10], 14); | |
134 III(ccc, ddd, aaa, bbb, X[ 3], 12); | |
135 III(bbb, ccc, ddd, aaa, X[12], 6); | |
136 | |
137 tmp = aa; aa = aaa; aaa = tmp; | |
138 | |
139 /* round 2 */ | |
140 GG(aa, bb, cc, dd, X[ 7], 7); | |
141 GG(dd, aa, bb, cc, X[ 4], 6); | |
142 GG(cc, dd, aa, bb, X[13], 8); | |
143 GG(bb, cc, dd, aa, X[ 1], 13); | |
144 GG(aa, bb, cc, dd, X[10], 11); | |
145 GG(dd, aa, bb, cc, X[ 6], 9); | |
146 GG(cc, dd, aa, bb, X[15], 7); | |
147 GG(bb, cc, dd, aa, X[ 3], 15); | |
148 GG(aa, bb, cc, dd, X[12], 7); | |
149 GG(dd, aa, bb, cc, X[ 0], 12); | |
150 GG(cc, dd, aa, bb, X[ 9], 15); | |
151 GG(bb, cc, dd, aa, X[ 5], 9); | |
152 GG(aa, bb, cc, dd, X[ 2], 11); | |
153 GG(dd, aa, bb, cc, X[14], 7); | |
154 GG(cc, dd, aa, bb, X[11], 13); | |
155 GG(bb, cc, dd, aa, X[ 8], 12); | |
156 | |
157 /* parallel round 2 */ | |
158 HHH(aaa, bbb, ccc, ddd, X[ 6], 9); | |
159 HHH(ddd, aaa, bbb, ccc, X[11], 13); | |
160 HHH(ccc, ddd, aaa, bbb, X[ 3], 15); | |
161 HHH(bbb, ccc, ddd, aaa, X[ 7], 7); | |
162 HHH(aaa, bbb, ccc, ddd, X[ 0], 12); | |
163 HHH(ddd, aaa, bbb, ccc, X[13], 8); | |
164 HHH(ccc, ddd, aaa, bbb, X[ 5], 9); | |
165 HHH(bbb, ccc, ddd, aaa, X[10], 11); | |
166 HHH(aaa, bbb, ccc, ddd, X[14], 7); | |
167 HHH(ddd, aaa, bbb, ccc, X[15], 7); | |
168 HHH(ccc, ddd, aaa, bbb, X[ 8], 12); | |
169 HHH(bbb, ccc, ddd, aaa, X[12], 7); | |
170 HHH(aaa, bbb, ccc, ddd, X[ 4], 6); | |
171 HHH(ddd, aaa, bbb, ccc, X[ 9], 15); | |
172 HHH(ccc, ddd, aaa, bbb, X[ 1], 13); | |
173 HHH(bbb, ccc, ddd, aaa, X[ 2], 11); | |
174 | |
175 tmp = bb; bb = bbb; bbb = tmp; | |
176 | |
177 /* round 3 */ | |
178 HH(aa, bb, cc, dd, X[ 3], 11); | |
179 HH(dd, aa, bb, cc, X[10], 13); | |
180 HH(cc, dd, aa, bb, X[14], 6); | |
181 HH(bb, cc, dd, aa, X[ 4], 7); | |
182 HH(aa, bb, cc, dd, X[ 9], 14); | |
183 HH(dd, aa, bb, cc, X[15], 9); | |
184 HH(cc, dd, aa, bb, X[ 8], 13); | |
185 HH(bb, cc, dd, aa, X[ 1], 15); | |
186 HH(aa, bb, cc, dd, X[ 2], 14); | |
187 HH(dd, aa, bb, cc, X[ 7], 8); | |
188 HH(cc, dd, aa, bb, X[ 0], 13); | |
189 HH(bb, cc, dd, aa, X[ 6], 6); | |
190 HH(aa, bb, cc, dd, X[13], 5); | |
191 HH(dd, aa, bb, cc, X[11], 12); | |
192 HH(cc, dd, aa, bb, X[ 5], 7); | |
193 HH(bb, cc, dd, aa, X[12], 5); | |
194 | |
195 /* parallel round 3 */ | |
196 GGG(aaa, bbb, ccc, ddd, X[15], 9); | |
197 GGG(ddd, aaa, bbb, ccc, X[ 5], 7); | |
198 GGG(ccc, ddd, aaa, bbb, X[ 1], 15); | |
199 GGG(bbb, ccc, ddd, aaa, X[ 3], 11); | |
200 GGG(aaa, bbb, ccc, ddd, X[ 7], 8); | |
201 GGG(ddd, aaa, bbb, ccc, X[14], 6); | |
202 GGG(ccc, ddd, aaa, bbb, X[ 6], 6); | |
203 GGG(bbb, ccc, ddd, aaa, X[ 9], 14); | |
204 GGG(aaa, bbb, ccc, ddd, X[11], 12); | |
205 GGG(ddd, aaa, bbb, ccc, X[ 8], 13); | |
206 GGG(ccc, ddd, aaa, bbb, X[12], 5); | |
207 GGG(bbb, ccc, ddd, aaa, X[ 2], 14); | |
208 GGG(aaa, bbb, ccc, ddd, X[10], 13); | |
209 GGG(ddd, aaa, bbb, ccc, X[ 0], 13); | |
210 GGG(ccc, ddd, aaa, bbb, X[ 4], 7); | |
211 GGG(bbb, ccc, ddd, aaa, X[13], 5); | |
212 | |
213 tmp = cc; cc = ccc; ccc = tmp; | |
214 | |
215 /* round 4 */ | |
216 II(aa, bb, cc, dd, X[ 1], 11); | |
217 II(dd, aa, bb, cc, X[ 9], 12); | |
218 II(cc, dd, aa, bb, X[11], 14); | |
219 II(bb, cc, dd, aa, X[10], 15); | |
220 II(aa, bb, cc, dd, X[ 0], 14); | |
221 II(dd, aa, bb, cc, X[ 8], 15); | |
222 II(cc, dd, aa, bb, X[12], 9); | |
223 II(bb, cc, dd, aa, X[ 4], 8); | |
224 II(aa, bb, cc, dd, X[13], 9); | |
225 II(dd, aa, bb, cc, X[ 3], 14); | |
226 II(cc, dd, aa, bb, X[ 7], 5); | |
227 II(bb, cc, dd, aa, X[15], 6); | |
228 II(aa, bb, cc, dd, X[14], 8); | |
229 II(dd, aa, bb, cc, X[ 5], 6); | |
230 II(cc, dd, aa, bb, X[ 6], 5); | |
231 II(bb, cc, dd, aa, X[ 2], 12); | |
232 | |
233 /* parallel round 4 */ | |
234 FFF(aaa, bbb, ccc, ddd, X[ 8], 15); | |
235 FFF(ddd, aaa, bbb, ccc, X[ 6], 5); | |
236 FFF(ccc, ddd, aaa, bbb, X[ 4], 8); | |
237 FFF(bbb, ccc, ddd, aaa, X[ 1], 11); | |
238 FFF(aaa, bbb, ccc, ddd, X[ 3], 14); | |
239 FFF(ddd, aaa, bbb, ccc, X[11], 14); | |
240 FFF(ccc, ddd, aaa, bbb, X[15], 6); | |
241 FFF(bbb, ccc, ddd, aaa, X[ 0], 14); | |
242 FFF(aaa, bbb, ccc, ddd, X[ 5], 6); | |
243 FFF(ddd, aaa, bbb, ccc, X[12], 9); | |
244 FFF(ccc, ddd, aaa, bbb, X[ 2], 12); | |
245 FFF(bbb, ccc, ddd, aaa, X[13], 9); | |
246 FFF(aaa, bbb, ccc, ddd, X[ 9], 12); | |
247 FFF(ddd, aaa, bbb, ccc, X[ 7], 5); | |
248 FFF(ccc, ddd, aaa, bbb, X[10], 15); | |
249 FFF(bbb, ccc, ddd, aaa, X[14], 8); | |
250 | |
251 tmp = dd; dd = ddd; ddd = tmp; | |
252 | |
253 /* combine results */ | |
254 md->rmd256.state[0] += aa; | |
255 md->rmd256.state[1] += bb; | |
256 md->rmd256.state[2] += cc; | |
257 md->rmd256.state[3] += dd; | |
258 md->rmd256.state[4] += aaa; | |
259 md->rmd256.state[5] += bbb; | |
260 md->rmd256.state[6] += ccc; | |
261 md->rmd256.state[7] += ddd; | |
262 | |
263 return CRYPT_OK; | |
264 } | |
265 | |
266 #ifdef LTC_CLEAN_STACK | |
267 static int rmd256_compress(hash_state *md, unsigned char *buf) | |
268 { | |
269 int err; | |
270 err = _rmd256_compress(md, buf); | |
271 burn_stack(sizeof(ulong32) * 25 + sizeof(int)); | |
272 return err; | |
273 } | |
274 #endif | |
275 | |
276 /** | |
277 Initialize the hash state | |
278 @param md The hash state you wish to initialize | |
279 @return CRYPT_OK if successful | |
280 */ | |
281 int rmd256_init(hash_state * md) | |
282 { | |
283 LTC_ARGCHK(md != NULL); | |
284 md->rmd256.state[0] = 0x67452301UL; | |
285 md->rmd256.state[1] = 0xefcdab89UL; | |
286 md->rmd256.state[2] = 0x98badcfeUL; | |
287 md->rmd256.state[3] = 0x10325476UL; | |
288 md->rmd256.state[4] = 0x76543210UL; | |
289 md->rmd256.state[5] = 0xfedcba98UL; | |
290 md->rmd256.state[6] = 0x89abcdefUL; | |
291 md->rmd256.state[7] = 0x01234567UL; | |
292 md->rmd256.curlen = 0; | |
293 md->rmd256.length = 0; | |
294 return CRYPT_OK; | |
295 } | |
296 | |
297 /** | |
298 Process a block of memory though the hash | |
299 @param md The hash state | |
300 @param in The data to hash | |
301 @param inlen The length of the data (octets) | |
302 @return CRYPT_OK if successful | |
303 */ | |
304 HASH_PROCESS(rmd256_process, rmd256_compress, rmd256, 64) | |
305 | |
306 /** | |
307 Terminate the hash to get the digest | |
308 @param md The hash state | |
309 @param out [out] The destination of the hash (16 bytes) | |
310 @return CRYPT_OK if successful | |
311 */ | |
312 int rmd256_done(hash_state * md, unsigned char *out) | |
313 { | |
314 int i; | |
315 | |
316 LTC_ARGCHK(md != NULL); | |
317 LTC_ARGCHK(out != NULL); | |
318 | |
319 if (md->rmd256.curlen >= sizeof(md->rmd256.buf)) { | |
320 return CRYPT_INVALID_ARG; | |
321 } | |
322 | |
323 | |
324 /* increase the length of the message */ | |
325 md->rmd256.length += md->rmd256.curlen * 8; | |
326 | |
327 /* append the '1' bit */ | |
328 md->rmd256.buf[md->rmd256.curlen++] = (unsigned char)0x80; | |
329 | |
330 /* if the length is currently above 56 bytes we append zeros | |
331 * then compress. Then we can fall back to padding zeros and length | |
332 * encoding like normal. | |
333 */ | |
334 if (md->rmd256.curlen > 56) { | |
335 while (md->rmd256.curlen < 64) { | |
336 md->rmd256.buf[md->rmd256.curlen++] = (unsigned char)0; | |
337 } | |
338 rmd256_compress(md, md->rmd256.buf); | |
339 md->rmd256.curlen = 0; | |
340 } | |
341 | |
342 /* pad upto 56 bytes of zeroes */ | |
343 while (md->rmd256.curlen < 56) { | |
344 md->rmd256.buf[md->rmd256.curlen++] = (unsigned char)0; | |
345 } | |
346 | |
347 /* store length */ | |
348 STORE64L(md->rmd256.length, md->rmd256.buf+56); | |
349 rmd256_compress(md, md->rmd256.buf); | |
350 | |
351 /* copy output */ | |
352 for (i = 0; i < 8; i++) { | |
353 STORE32L(md->rmd256.state[i], out+(4*i)); | |
354 } | |
355 #ifdef LTC_CLEAN_STACK | |
356 zeromem(md, sizeof(hash_state)); | |
357 #endif | |
358 return CRYPT_OK; | |
359 } | |
360 | |
361 /** | |
362 Self-test the hash | |
363 @return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled | |
364 */ | |
365 int rmd256_test(void) | |
366 { | |
367 #ifndef LTC_TEST | |
368 return CRYPT_NOP; | |
369 #else | |
370 static const struct { | |
371 char *msg; | |
372 unsigned char md[32]; | |
373 } tests[] = { | |
374 { "", | |
375 { 0x02, 0xba, 0x4c, 0x4e, 0x5f, 0x8e, 0xcd, 0x18, | |
376 0x77, 0xfc, 0x52, 0xd6, 0x4d, 0x30, 0xe3, 0x7a, | |
377 0x2d, 0x97, 0x74, 0xfb, 0x1e, 0x5d, 0x02, 0x63, | |
378 0x80, 0xae, 0x01, 0x68, 0xe3, 0xc5, 0x52, 0x2d } | |
379 }, | |
380 { "a", | |
381 { 0xf9, 0x33, 0x3e, 0x45, 0xd8, 0x57, 0xf5, 0xd9, | |
382 0x0a, 0x91, 0xba, 0xb7, 0x0a, 0x1e, 0xba, 0x0c, | |
383 0xfb, 0x1b, 0xe4, 0xb0, 0x78, 0x3c, 0x9a, 0xcf, | |
384 0xcd, 0x88, 0x3a, 0x91, 0x34, 0x69, 0x29, 0x25 } | |
385 }, | |
386 { "abc", | |
387 { 0xaf, 0xbd, 0x6e, 0x22, 0x8b, 0x9d, 0x8c, 0xbb, | |
388 0xce, 0xf5, 0xca, 0x2d, 0x03, 0xe6, 0xdb, 0xa1, | |
389 0x0a, 0xc0, 0xbc, 0x7d, 0xcb, 0xe4, 0x68, 0x0e, | |
390 0x1e, 0x42, 0xd2, 0xe9, 0x75, 0x45, 0x9b, 0x65 } | |
391 }, | |
392 { "message digest", | |
393 { 0x87, 0xe9, 0x71, 0x75, 0x9a, 0x1c, 0xe4, 0x7a, | |
394 0x51, 0x4d, 0x5c, 0x91, 0x4c, 0x39, 0x2c, 0x90, | |
395 0x18, 0xc7, 0xc4, 0x6b, 0xc1, 0x44, 0x65, 0x55, | |
396 0x4a, 0xfc, 0xdf, 0x54, 0xa5, 0x07, 0x0c, 0x0e } | |
397 }, | |
398 { "abcdefghijklmnopqrstuvwxyz", | |
399 { 0x64, 0x9d, 0x30, 0x34, 0x75, 0x1e, 0xa2, 0x16, | |
400 0x77, 0x6b, 0xf9, 0xa1, 0x8a, 0xcc, 0x81, 0xbc, | |
401 0x78, 0x96, 0x11, 0x8a, 0x51, 0x97, 0x96, 0x87, | |
402 0x82, 0xdd, 0x1f, 0xd9, 0x7d, 0x8d, 0x51, 0x33 } | |
403 }, | |
404 { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", | |
405 { 0x57, 0x40, 0xa4, 0x08, 0xac, 0x16, 0xb7, 0x20, | |
406 0xb8, 0x44, 0x24, 0xae, 0x93, 0x1c, 0xbb, 0x1f, | |
407 0xe3, 0x63, 0xd1, 0xd0, 0xbf, 0x40, 0x17, 0xf1, | |
408 0xa8, 0x9f, 0x7e, 0xa6, 0xde, 0x77, 0xa0, 0xb8 } | |
409 } | |
410 }; | |
411 int x; | |
412 unsigned char buf[32]; | |
413 hash_state md; | |
414 | |
415 for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) { | |
416 rmd256_init(&md); | |
417 rmd256_process(&md, (unsigned char *)tests[x].msg, strlen(tests[x].msg)); | |
418 rmd256_done(&md, buf); | |
419 if (XMEMCMP(buf, tests[x].md, 32) != 0) { | |
420 #if 0 | |
421 printf("Failed test %d\n", x); | |
422 #endif | |
423 return CRYPT_FAIL_TESTVECTOR; | |
424 } | |
425 } | |
426 return CRYPT_OK; | |
427 #endif | |
428 } | |
429 | |
430 #endif | |
431 |