Mercurial > dropbear
comparison libtomcrypt/src/pk/ecc/ltc_ecc_mulmod.c @ 382:0cbe8f6dbf9e
propagate from branch 'au.asn.ucc.matt.ltc.dropbear' (head 2af22fb4e878750b88f80f90d439b316d229796f)
to branch 'au.asn.ucc.matt.dropbear' (head 02c413252c90e9de8e03d91e9939dde3029f5c0a)
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Thu, 11 Jan 2007 02:41:05 +0000 |
parents | |
children | f849a5ca2efc |
comparison
equal
deleted
inserted
replaced
379:b66a00272a90 | 382:0cbe8f6dbf9e |
---|---|
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis | |
2 * | |
3 * LibTomCrypt is a library that provides various cryptographic | |
4 * algorithms in a highly modular and flexible manner. | |
5 * | |
6 * The library is free for all purposes without any express | |
7 * guarantee it works. | |
8 * | |
9 * Tom St Denis, [email protected], http://libtomcrypt.com | |
10 */ | |
11 | |
12 /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b | |
13 * | |
14 * All curves taken from NIST recommendation paper of July 1999 | |
15 * Available at http://csrc.nist.gov/cryptval/dss.htm | |
16 */ | |
17 #include "tomcrypt.h" | |
18 | |
19 /** | |
20 @file ltc_ecc_mulmod.c | |
21 ECC Crypto, Tom St Denis | |
22 */ | |
23 | |
24 #ifdef MECC | |
25 #ifndef LTC_ECC_TIMING_RESISTANT | |
26 | |
27 /* size of sliding window, don't change this! */ | |
28 #define WINSIZE 4 | |
29 | |
30 /** | |
31 Perform a point multiplication | |
32 @param k The scalar to multiply by | |
33 @param G The base point | |
34 @param R [out] Destination for kG | |
35 @param modulus The modulus of the field the ECC curve is in | |
36 @param map Boolean whether to map back to affine or not (1==map, 0 == leave in projective) | |
37 @return CRYPT_OK on success | |
38 */ | |
39 int ltc_ecc_mulmod(void *k, ecc_point *G, ecc_point *R, void *modulus, int map) | |
40 { | |
41 ecc_point *tG, *M[8]; | |
42 int i, j, err; | |
43 void *mu, *mp; | |
44 unsigned long buf; | |
45 int first, bitbuf, bitcpy, bitcnt, mode, digidx; | |
46 | |
47 LTC_ARGCHK(k != NULL); | |
48 LTC_ARGCHK(G != NULL); | |
49 LTC_ARGCHK(R != NULL); | |
50 LTC_ARGCHK(modulus != NULL); | |
51 | |
52 /* init montgomery reduction */ | |
53 if ((err = mp_montgomery_setup(modulus, &mp)) != CRYPT_OK) { | |
54 return err; | |
55 } | |
56 if ((err = mp_init(&mu)) != CRYPT_OK) { | |
57 mp_montgomery_free(mp); | |
58 return err; | |
59 } | |
60 if ((err = mp_montgomery_normalization(mu, modulus)) != CRYPT_OK) { | |
61 mp_montgomery_free(mp); | |
62 mp_clear(mu); | |
63 return err; | |
64 } | |
65 | |
66 /* alloc ram for window temps */ | |
67 for (i = 0; i < 8; i++) { | |
68 M[i] = ltc_ecc_new_point(); | |
69 if (M[i] == NULL) { | |
70 for (j = 0; j < i; j++) { | |
71 ltc_ecc_del_point(M[j]); | |
72 } | |
73 mp_montgomery_free(mp); | |
74 mp_clear(mu); | |
75 return CRYPT_MEM; | |
76 } | |
77 } | |
78 | |
79 /* make a copy of G incase R==G */ | |
80 tG = ltc_ecc_new_point(); | |
81 if (tG == NULL) { err = CRYPT_MEM; goto done; } | |
82 | |
83 /* tG = G and convert to montgomery */ | |
84 if (mp_cmp_d(mu, 1) == LTC_MP_EQ) { | |
85 if ((err = mp_copy(G->x, tG->x)) != CRYPT_OK) { goto done; } | |
86 if ((err = mp_copy(G->y, tG->y)) != CRYPT_OK) { goto done; } | |
87 if ((err = mp_copy(G->z, tG->z)) != CRYPT_OK) { goto done; } | |
88 } else { | |
89 if ((err = mp_mulmod(G->x, mu, modulus, tG->x)) != CRYPT_OK) { goto done; } | |
90 if ((err = mp_mulmod(G->y, mu, modulus, tG->y)) != CRYPT_OK) { goto done; } | |
91 if ((err = mp_mulmod(G->z, mu, modulus, tG->z)) != CRYPT_OK) { goto done; } | |
92 } | |
93 mp_clear(mu); | |
94 mu = NULL; | |
95 | |
96 /* calc the M tab, which holds kG for k==8..15 */ | |
97 /* M[0] == 8G */ | |
98 if ((err = ltc_mp.ecc_ptdbl(tG, M[0], modulus, mp)) != CRYPT_OK) { goto done; } | |
99 if ((err = ltc_mp.ecc_ptdbl(M[0], M[0], modulus, mp)) != CRYPT_OK) { goto done; } | |
100 if ((err = ltc_mp.ecc_ptdbl(M[0], M[0], modulus, mp)) != CRYPT_OK) { goto done; } | |
101 | |
102 /* now find (8+k)G for k=1..7 */ | |
103 for (j = 9; j < 16; j++) { | |
104 if ((err = ltc_mp.ecc_ptadd(M[j-9], tG, M[j-8], modulus, mp)) != CRYPT_OK) { goto done; } | |
105 } | |
106 | |
107 /* setup sliding window */ | |
108 mode = 0; | |
109 bitcnt = 1; | |
110 buf = 0; | |
111 digidx = mp_get_digit_count(k) - 1; | |
112 bitcpy = bitbuf = 0; | |
113 first = 1; | |
114 | |
115 /* perform ops */ | |
116 for (;;) { | |
117 /* grab next digit as required */ | |
118 if (--bitcnt == 0) { | |
119 if (digidx == -1) { | |
120 break; | |
121 } | |
122 buf = mp_get_digit(k, digidx); | |
123 bitcnt = (int) ltc_mp.bits_per_digit; | |
124 --digidx; | |
125 } | |
126 | |
127 /* grab the next msb from the ltiplicand */ | |
128 i = (buf >> (ltc_mp.bits_per_digit - 1)) & 1; | |
129 buf <<= 1; | |
130 | |
131 /* skip leading zero bits */ | |
132 if (mode == 0 && i == 0) { | |
133 continue; | |
134 } | |
135 | |
136 /* if the bit is zero and mode == 1 then we double */ | |
137 if (mode == 1 && i == 0) { | |
138 if ((err = ltc_mp.ecc_ptdbl(R, R, modulus, mp)) != CRYPT_OK) { goto done; } | |
139 continue; | |
140 } | |
141 | |
142 /* else we add it to the window */ | |
143 bitbuf |= (i << (WINSIZE - ++bitcpy)); | |
144 mode = 2; | |
145 | |
146 if (bitcpy == WINSIZE) { | |
147 /* if this is the first window we do a simple copy */ | |
148 if (first == 1) { | |
149 /* R = kG [k = first window] */ | |
150 if ((err = mp_copy(M[bitbuf-8]->x, R->x)) != CRYPT_OK) { goto done; } | |
151 if ((err = mp_copy(M[bitbuf-8]->y, R->y)) != CRYPT_OK) { goto done; } | |
152 if ((err = mp_copy(M[bitbuf-8]->z, R->z)) != CRYPT_OK) { goto done; } | |
153 first = 0; | |
154 } else { | |
155 /* normal window */ | |
156 /* ok window is filled so double as required and add */ | |
157 /* double first */ | |
158 for (j = 0; j < WINSIZE; j++) { | |
159 if ((err = ltc_mp.ecc_ptdbl(R, R, modulus, mp)) != CRYPT_OK) { goto done; } | |
160 } | |
161 | |
162 /* then add, bitbuf will be 8..15 [8..2^WINSIZE] guaranteed */ | |
163 if ((err = ltc_mp.ecc_ptadd(R, M[bitbuf-8], R, modulus, mp)) != CRYPT_OK) { goto done; } | |
164 } | |
165 /* empty window and reset */ | |
166 bitcpy = bitbuf = 0; | |
167 mode = 1; | |
168 } | |
169 } | |
170 | |
171 /* if bits remain then double/add */ | |
172 if (mode == 2 && bitcpy > 0) { | |
173 /* double then add */ | |
174 for (j = 0; j < bitcpy; j++) { | |
175 /* only double if we have had at least one add first */ | |
176 if (first == 0) { | |
177 if ((err = ltc_mp.ecc_ptdbl(R, R, modulus, mp)) != CRYPT_OK) { goto done; } | |
178 } | |
179 | |
180 bitbuf <<= 1; | |
181 if ((bitbuf & (1 << WINSIZE)) != 0) { | |
182 if (first == 1){ | |
183 /* first add, so copy */ | |
184 if ((err = mp_copy(tG->x, R->x)) != CRYPT_OK) { goto done; } | |
185 if ((err = mp_copy(tG->y, R->y)) != CRYPT_OK) { goto done; } | |
186 if ((err = mp_copy(tG->z, R->z)) != CRYPT_OK) { goto done; } | |
187 first = 0; | |
188 } else { | |
189 /* then add */ | |
190 if ((err = ltc_mp.ecc_ptadd(R, tG, R, modulus, mp)) != CRYPT_OK) { goto done; } | |
191 } | |
192 } | |
193 } | |
194 } | |
195 | |
196 /* map R back from projective space */ | |
197 if (map) { | |
198 err = ltc_ecc_map(R, modulus, mp); | |
199 } else { | |
200 err = CRYPT_OK; | |
201 } | |
202 done: | |
203 if (mu != NULL) { | |
204 mp_clear(mu); | |
205 } | |
206 mp_montgomery_free(mp); | |
207 ltc_ecc_del_point(tG); | |
208 for (i = 0; i < 8; i++) { | |
209 ltc_ecc_del_point(M[i]); | |
210 } | |
211 return err; | |
212 } | |
213 | |
214 #endif | |
215 | |
216 #undef WINSIZE | |
217 | |
218 #endif | |
219 | |
220 /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ltc_ecc_mulmod.c,v $ */ | |
221 /* $Revision: 1.24 $ */ | |
222 /* $Date: 2006/12/04 05:07:59 $ */ |