Mercurial > dropbear
comparison libtomcrypt/src/pk/ecc/ltc_ecc_mulmod_timing.c @ 382:0cbe8f6dbf9e
propagate from branch 'au.asn.ucc.matt.ltc.dropbear' (head 2af22fb4e878750b88f80f90d439b316d229796f)
to branch 'au.asn.ucc.matt.dropbear' (head 02c413252c90e9de8e03d91e9939dde3029f5c0a)
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Thu, 11 Jan 2007 02:41:05 +0000 |
parents | |
children | 0e1465709336 |
comparison
equal
deleted
inserted
replaced
379:b66a00272a90 | 382:0cbe8f6dbf9e |
---|---|
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis | |
2 * | |
3 * LibTomCrypt is a library that provides various cryptographic | |
4 * algorithms in a highly modular and flexible manner. | |
5 * | |
6 * The library is free for all purposes without any express | |
7 * guarantee it works. | |
8 * | |
9 * Tom St Denis, [email protected], http://libtomcrypt.com | |
10 */ | |
11 | |
12 /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b | |
13 * | |
14 * All curves taken from NIST recommendation paper of July 1999 | |
15 * Available at http://csrc.nist.gov/cryptval/dss.htm | |
16 */ | |
17 #include "tomcrypt.h" | |
18 | |
19 /** | |
20 @file ltc_ecc_mulmod_timing.c | |
21 ECC Crypto, Tom St Denis | |
22 */ | |
23 | |
24 #ifdef MECC | |
25 | |
26 #ifdef LTC_ECC_TIMING_RESISTANT | |
27 | |
28 /** | |
29 Perform a point multiplication (timing resistant) | |
30 @param k The scalar to multiply by | |
31 @param G The base point | |
32 @param R [out] Destination for kG | |
33 @param modulus The modulus of the field the ECC curve is in | |
34 @param map Boolean whether to map back to affine or not (1==map, 0 == leave in projective) | |
35 @return CRYPT_OK on success | |
36 */ | |
37 int ltc_ecc_mulmod(void *k, ecc_point *G, ecc_point *R, void *modulus, int map) | |
38 { | |
39 ecc_point *tG, *M[3]; | |
40 int i, j, err; | |
41 void *mu, *mp; | |
42 unsigned long buf; | |
43 int first, bitbuf, bitcpy, bitcnt, mode, digidx; | |
44 | |
45 LTC_ARGCHK(k != NULL); | |
46 LTC_ARGCHK(G != NULL); | |
47 LTC_ARGCHK(R != NULL); | |
48 LTC_ARGCHK(modulus != NULL); | |
49 | |
50 /* init montgomery reduction */ | |
51 if ((err = mp_montgomery_setup(modulus, &mp)) != CRYPT_OK) { | |
52 return err; | |
53 } | |
54 if ((err = mp_init(&mu)) != CRYPT_OK) { | |
55 mp_montgomery_free(mp); | |
56 return err; | |
57 } | |
58 if ((err = mp_montgomery_normalization(mu, modulus)) != CRYPT_OK) { | |
59 mp_clear(mu); | |
60 mp_montgomery_free(mp); | |
61 return err; | |
62 } | |
63 | |
64 /* alloc ram for window temps */ | |
65 for (i = 0; i < 3; i++) { | |
66 M[i] = ltc_ecc_new_point(); | |
67 if (M[i] == NULL) { | |
68 for (j = 0; j < i; j++) { | |
69 ltc_ecc_del_point(M[j]); | |
70 } | |
71 mp_clear(mu); | |
72 mp_montgomery_free(mp); | |
73 return CRYPT_MEM; | |
74 } | |
75 } | |
76 | |
77 /* make a copy of G incase R==G */ | |
78 tG = ltc_ecc_new_point(); | |
79 if (tG == NULL) { err = CRYPT_MEM; goto done; } | |
80 | |
81 /* tG = G and convert to montgomery */ | |
82 if ((err = mp_mulmod(G->x, mu, modulus, tG->x)) != CRYPT_OK) { goto done; } | |
83 if ((err = mp_mulmod(G->y, mu, modulus, tG->y)) != CRYPT_OK) { goto done; } | |
84 if ((err = mp_mulmod(G->z, mu, modulus, tG->z)) != CRYPT_OK) { goto done; } | |
85 mp_clear(mu); | |
86 mu = NULL; | |
87 | |
88 /* calc the M tab */ | |
89 /* M[0] == G */ | |
90 if ((err = mp_copy(tG->x, M[0]->x)) != CRYPT_OK) { goto done; } | |
91 if ((err = mp_copy(tG->y, M[0]->y)) != CRYPT_OK) { goto done; } | |
92 if ((err = mp_copy(tG->z, M[0]->z)) != CRYPT_OK) { goto done; } | |
93 /* M[1] == 2G */ | |
94 if ((err = ltc_mp.ecc_ptdbl(tG, M[1], modulus, mp)) != CRYPT_OK) { goto done; } | |
95 | |
96 /* setup sliding window */ | |
97 mode = 0; | |
98 bitcnt = 1; | |
99 buf = 0; | |
100 digidx = mp_get_digit_count(k) - 1; | |
101 bitcpy = bitbuf = 0; | |
102 first = 1; | |
103 | |
104 /* perform ops */ | |
105 for (;;) { | |
106 /* grab next digit as required */ | |
107 if (--bitcnt == 0) { | |
108 if (digidx == -1) { | |
109 break; | |
110 } | |
111 buf = mp_get_digit(k, digidx); | |
112 bitcnt = (int) MP_DIGIT_BIT; | |
113 --digidx; | |
114 } | |
115 | |
116 /* grab the next msb from the ltiplicand */ | |
117 i = (buf >> (MP_DIGIT_BIT - 1)) & 1; | |
118 buf <<= 1; | |
119 | |
120 if (mode == 0 && i == 0) { | |
121 /* dummy operations */ | |
122 if ((err = ltc_mp.ecc_ptadd(M[0], M[1], M[2], modulus, mp)) != CRYPT_OK) { goto done; } | |
123 if ((err = ltc_mp.ecc_ptdbl(M[1], M[2], modulus, mp)) != CRYPT_OK) { goto done; } | |
124 continue; | |
125 } | |
126 | |
127 if (mode == 0 && i == 1) { | |
128 mode = 1; | |
129 /* dummy operations */ | |
130 if ((err = ltc_mp.ecc_ptadd(M[0], M[1], M[2], modulus, mp)) != CRYPT_OK) { goto done; } | |
131 if ((err = ltc_mp.ecc_ptdbl(M[1], M[2], modulus, mp)) != CRYPT_OK) { goto done; } | |
132 continue; | |
133 } | |
134 | |
135 if ((err = ltc_mp.ecc_ptadd(M[0], M[1], M[i^1], modulus, mp)) != CRYPT_OK) { goto done; } | |
136 if ((err = ltc_mp.ecc_ptdbl(M[i], M[i], modulus, mp)) != CRYPT_OK) { goto done; } | |
137 } | |
138 | |
139 /* copy result out */ | |
140 if ((err = mp_copy(M[0]->x, R->x)) != CRYPT_OK) { goto done; } | |
141 if ((err = mp_copy(M[0]->y, R->y)) != CRYPT_OK) { goto done; } | |
142 if ((err = mp_copy(M[0]->z, R->z)) != CRYPT_OK) { goto done; } | |
143 | |
144 /* map R back from projective space */ | |
145 if (map) { | |
146 err = ltc_ecc_map(R, modulus, mp); | |
147 } else { | |
148 err = CRYPT_OK; | |
149 } | |
150 done: | |
151 if (mu != NULL) { | |
152 mp_clear(mu); | |
153 } | |
154 mp_montgomery_free(mp); | |
155 ltc_ecc_del_point(tG); | |
156 for (i = 0; i < 3; i++) { | |
157 ltc_ecc_del_point(M[i]); | |
158 } | |
159 return err; | |
160 } | |
161 | |
162 #endif | |
163 #endif | |
164 /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ltc_ecc_mulmod_timing.c,v $ */ | |
165 /* $Revision: 1.11 $ */ | |
166 /* $Date: 2006/12/04 22:17:46 $ */ | |
167 |