Mercurial > dropbear
comparison libtomcrypt/src/pk/ecc/ltc_ecc_projective_dbl_point.c @ 382:0cbe8f6dbf9e
propagate from branch 'au.asn.ucc.matt.ltc.dropbear' (head 2af22fb4e878750b88f80f90d439b316d229796f)
to branch 'au.asn.ucc.matt.dropbear' (head 02c413252c90e9de8e03d91e9939dde3029f5c0a)
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Thu, 11 Jan 2007 02:41:05 +0000 |
parents | |
children | f849a5ca2efc |
comparison
equal
deleted
inserted
replaced
379:b66a00272a90 | 382:0cbe8f6dbf9e |
---|---|
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis | |
2 * | |
3 * LibTomCrypt is a library that provides various cryptographic | |
4 * algorithms in a highly modular and flexible manner. | |
5 * | |
6 * The library is free for all purposes without any express | |
7 * guarantee it works. | |
8 * | |
9 * Tom St Denis, [email protected], http://libtomcrypt.com | |
10 */ | |
11 | |
12 /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b | |
13 * | |
14 * All curves taken from NIST recommendation paper of July 1999 | |
15 * Available at http://csrc.nist.gov/cryptval/dss.htm | |
16 */ | |
17 #include "tomcrypt.h" | |
18 | |
19 /** | |
20 @file ltc_ecc_projective_dbl_point.c | |
21 ECC Crypto, Tom St Denis | |
22 */ | |
23 | |
24 #if defined(MECC) && (!defined(MECC_ACCEL) || defined(LTM_DESC)) | |
25 | |
26 /** | |
27 Double an ECC point | |
28 @param P The point to double | |
29 @param R [out] The destination of the double | |
30 @param modulus The modulus of the field the ECC curve is in | |
31 @param mp The "b" value from montgomery_setup() | |
32 @return CRYPT_OK on success | |
33 */ | |
34 int ltc_ecc_projective_dbl_point(ecc_point *P, ecc_point *R, void *modulus, void *mp) | |
35 { | |
36 void *t1, *t2; | |
37 int err; | |
38 | |
39 LTC_ARGCHK(P != NULL); | |
40 LTC_ARGCHK(R != NULL); | |
41 LTC_ARGCHK(modulus != NULL); | |
42 LTC_ARGCHK(mp != NULL); | |
43 | |
44 if ((err = mp_init_multi(&t1, &t2, NULL)) != CRYPT_OK) { | |
45 return err; | |
46 } | |
47 | |
48 if (P != R) { | |
49 if ((err = mp_copy(P->x, R->x)) != CRYPT_OK) { goto done; } | |
50 if ((err = mp_copy(P->y, R->y)) != CRYPT_OK) { goto done; } | |
51 if ((err = mp_copy(P->z, R->z)) != CRYPT_OK) { goto done; } | |
52 } | |
53 | |
54 /* t1 = Z * Z */ | |
55 if ((err = mp_sqr(R->z, t1)) != CRYPT_OK) { goto done; } | |
56 if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; } | |
57 /* Z = Y * Z */ | |
58 if ((err = mp_mul(R->z, R->y, R->z)) != CRYPT_OK) { goto done; } | |
59 if ((err = mp_montgomery_reduce(R->z, modulus, mp)) != CRYPT_OK) { goto done; } | |
60 /* Z = 2Z */ | |
61 if ((err = mp_add(R->z, R->z, R->z)) != CRYPT_OK) { goto done; } | |
62 if (mp_cmp(R->z, modulus) != LTC_MP_LT) { | |
63 if ((err = mp_sub(R->z, modulus, R->z)) != CRYPT_OK) { goto done; } | |
64 } | |
65 | |
66 /* T2 = X - T1 */ | |
67 if ((err = mp_sub(R->x, t1, t2)) != CRYPT_OK) { goto done; } | |
68 if (mp_cmp_d(t2, 0) == LTC_MP_LT) { | |
69 if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK) { goto done; } | |
70 } | |
71 /* T1 = X + T1 */ | |
72 if ((err = mp_add(t1, R->x, t1)) != CRYPT_OK) { goto done; } | |
73 if (mp_cmp(t1, modulus) != LTC_MP_LT) { | |
74 if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK) { goto done; } | |
75 } | |
76 /* T2 = T1 * T2 */ | |
77 if ((err = mp_mul(t1, t2, t2)) != CRYPT_OK) { goto done; } | |
78 if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK) { goto done; } | |
79 /* T1 = 2T2 */ | |
80 if ((err = mp_add(t2, t2, t1)) != CRYPT_OK) { goto done; } | |
81 if (mp_cmp(t1, modulus) != LTC_MP_LT) { | |
82 if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK) { goto done; } | |
83 } | |
84 /* T1 = T1 + T2 */ | |
85 if ((err = mp_add(t1, t2, t1)) != CRYPT_OK) { goto done; } | |
86 if (mp_cmp(t1, modulus) != LTC_MP_LT) { | |
87 if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK) { goto done; } | |
88 } | |
89 | |
90 /* Y = 2Y */ | |
91 if ((err = mp_add(R->y, R->y, R->y)) != CRYPT_OK) { goto done; } | |
92 if (mp_cmp(R->y, modulus) != LTC_MP_LT) { | |
93 if ((err = mp_sub(R->y, modulus, R->y)) != CRYPT_OK) { goto done; } | |
94 } | |
95 /* Y = Y * Y */ | |
96 if ((err = mp_sqr(R->y, R->y)) != CRYPT_OK) { goto done; } | |
97 if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK) { goto done; } | |
98 /* T2 = Y * Y */ | |
99 if ((err = mp_sqr(R->y, t2)) != CRYPT_OK) { goto done; } | |
100 if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK) { goto done; } | |
101 /* T2 = T2/2 */ | |
102 if (mp_isodd(t2)) { | |
103 if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK) { goto done; } | |
104 } | |
105 if ((err = mp_div_2(t2, t2)) != CRYPT_OK) { goto done; } | |
106 /* Y = Y * X */ | |
107 if ((err = mp_mul(R->y, R->x, R->y)) != CRYPT_OK) { goto done; } | |
108 if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK) { goto done; } | |
109 | |
110 /* X = T1 * T1 */ | |
111 if ((err = mp_sqr(t1, R->x)) != CRYPT_OK) { goto done; } | |
112 if ((err = mp_montgomery_reduce(R->x, modulus, mp)) != CRYPT_OK) { goto done; } | |
113 /* X = X - Y */ | |
114 if ((err = mp_sub(R->x, R->y, R->x)) != CRYPT_OK) { goto done; } | |
115 if (mp_cmp_d(R->x, 0) == LTC_MP_LT) { | |
116 if ((err = mp_add(R->x, modulus, R->x)) != CRYPT_OK) { goto done; } | |
117 } | |
118 /* X = X - Y */ | |
119 if ((err = mp_sub(R->x, R->y, R->x)) != CRYPT_OK) { goto done; } | |
120 if (mp_cmp_d(R->x, 0) == LTC_MP_LT) { | |
121 if ((err = mp_add(R->x, modulus, R->x)) != CRYPT_OK) { goto done; } | |
122 } | |
123 | |
124 /* Y = Y - X */ | |
125 if ((err = mp_sub(R->y, R->x, R->y)) != CRYPT_OK) { goto done; } | |
126 if (mp_cmp_d(R->y, 0) == LTC_MP_LT) { | |
127 if ((err = mp_add(R->y, modulus, R->y)) != CRYPT_OK) { goto done; } | |
128 } | |
129 /* Y = Y * T1 */ | |
130 if ((err = mp_mul(R->y, t1, R->y)) != CRYPT_OK) { goto done; } | |
131 if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK) { goto done; } | |
132 /* Y = Y - T2 */ | |
133 if ((err = mp_sub(R->y, t2, R->y)) != CRYPT_OK) { goto done; } | |
134 if (mp_cmp_d(R->y, 0) == LTC_MP_LT) { | |
135 if ((err = mp_add(R->y, modulus, R->y)) != CRYPT_OK) { goto done; } | |
136 } | |
137 | |
138 err = CRYPT_OK; | |
139 done: | |
140 mp_clear_multi(t1, t2, NULL); | |
141 return err; | |
142 } | |
143 #endif | |
144 /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ltc_ecc_projective_dbl_point.c,v $ */ | |
145 /* $Revision: 1.8 $ */ | |
146 /* $Date: 2006/12/04 05:07:59 $ */ | |
147 |