Mercurial > dropbear
comparison libtommath/bn_s_mp_invmod_fast.c @ 1692:1051e4eea25a
Update LibTomMath to 1.2.0 (#84)
* update C files
* update other files
* update headers
* update makefiles
* remove mp_set/get_double()
* use ltm 1.2.0 API
* update ltm_desc
* use bundled tommath if system-tommath is too old
* XMALLOC etc. were changed to MP_MALLOC etc.
author | Steffen Jaeckel <s@jaeckel.eu> |
---|---|
date | Tue, 26 May 2020 17:36:47 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
1691:2d3745d58843 | 1692:1051e4eea25a |
---|---|
1 #include "tommath_private.h" | |
2 #ifdef BN_S_MP_INVMOD_FAST_C | |
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis */ | |
4 /* SPDX-License-Identifier: Unlicense */ | |
5 | |
6 /* computes the modular inverse via binary extended euclidean algorithm, | |
7 * that is c = 1/a mod b | |
8 * | |
9 * Based on slow invmod except this is optimized for the case where b is | |
10 * odd as per HAC Note 14.64 on pp. 610 | |
11 */ | |
12 mp_err s_mp_invmod_fast(const mp_int *a, const mp_int *b, mp_int *c) | |
13 { | |
14 mp_int x, y, u, v, B, D; | |
15 mp_sign neg; | |
16 mp_err err; | |
17 | |
18 /* 2. [modified] b must be odd */ | |
19 if (MP_IS_EVEN(b)) { | |
20 return MP_VAL; | |
21 } | |
22 | |
23 /* init all our temps */ | |
24 if ((err = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) { | |
25 return err; | |
26 } | |
27 | |
28 /* x == modulus, y == value to invert */ | |
29 if ((err = mp_copy(b, &x)) != MP_OKAY) goto LBL_ERR; | |
30 | |
31 /* we need y = |a| */ | |
32 if ((err = mp_mod(a, b, &y)) != MP_OKAY) goto LBL_ERR; | |
33 | |
34 /* if one of x,y is zero return an error! */ | |
35 if (MP_IS_ZERO(&x) || MP_IS_ZERO(&y)) { | |
36 err = MP_VAL; | |
37 goto LBL_ERR; | |
38 } | |
39 | |
40 /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ | |
41 if ((err = mp_copy(&x, &u)) != MP_OKAY) goto LBL_ERR; | |
42 if ((err = mp_copy(&y, &v)) != MP_OKAY) goto LBL_ERR; | |
43 mp_set(&D, 1uL); | |
44 | |
45 top: | |
46 /* 4. while u is even do */ | |
47 while (MP_IS_EVEN(&u)) { | |
48 /* 4.1 u = u/2 */ | |
49 if ((err = mp_div_2(&u, &u)) != MP_OKAY) goto LBL_ERR; | |
50 | |
51 /* 4.2 if B is odd then */ | |
52 if (MP_IS_ODD(&B)) { | |
53 if ((err = mp_sub(&B, &x, &B)) != MP_OKAY) goto LBL_ERR; | |
54 } | |
55 /* B = B/2 */ | |
56 if ((err = mp_div_2(&B, &B)) != MP_OKAY) goto LBL_ERR; | |
57 } | |
58 | |
59 /* 5. while v is even do */ | |
60 while (MP_IS_EVEN(&v)) { | |
61 /* 5.1 v = v/2 */ | |
62 if ((err = mp_div_2(&v, &v)) != MP_OKAY) goto LBL_ERR; | |
63 | |
64 /* 5.2 if D is odd then */ | |
65 if (MP_IS_ODD(&D)) { | |
66 /* D = (D-x)/2 */ | |
67 if ((err = mp_sub(&D, &x, &D)) != MP_OKAY) goto LBL_ERR; | |
68 } | |
69 /* D = D/2 */ | |
70 if ((err = mp_div_2(&D, &D)) != MP_OKAY) goto LBL_ERR; | |
71 } | |
72 | |
73 /* 6. if u >= v then */ | |
74 if (mp_cmp(&u, &v) != MP_LT) { | |
75 /* u = u - v, B = B - D */ | |
76 if ((err = mp_sub(&u, &v, &u)) != MP_OKAY) goto LBL_ERR; | |
77 | |
78 if ((err = mp_sub(&B, &D, &B)) != MP_OKAY) goto LBL_ERR; | |
79 } else { | |
80 /* v - v - u, D = D - B */ | |
81 if ((err = mp_sub(&v, &u, &v)) != MP_OKAY) goto LBL_ERR; | |
82 | |
83 if ((err = mp_sub(&D, &B, &D)) != MP_OKAY) goto LBL_ERR; | |
84 } | |
85 | |
86 /* if not zero goto step 4 */ | |
87 if (!MP_IS_ZERO(&u)) { | |
88 goto top; | |
89 } | |
90 | |
91 /* now a = C, b = D, gcd == g*v */ | |
92 | |
93 /* if v != 1 then there is no inverse */ | |
94 if (mp_cmp_d(&v, 1uL) != MP_EQ) { | |
95 err = MP_VAL; | |
96 goto LBL_ERR; | |
97 } | |
98 | |
99 /* b is now the inverse */ | |
100 neg = a->sign; | |
101 while (D.sign == MP_NEG) { | |
102 if ((err = mp_add(&D, b, &D)) != MP_OKAY) goto LBL_ERR; | |
103 } | |
104 | |
105 /* too big */ | |
106 while (mp_cmp_mag(&D, b) != MP_LT) { | |
107 if ((err = mp_sub(&D, b, &D)) != MP_OKAY) goto LBL_ERR; | |
108 } | |
109 | |
110 mp_exch(&D, c); | |
111 c->sign = neg; | |
112 err = MP_OKAY; | |
113 | |
114 LBL_ERR: | |
115 mp_clear_multi(&x, &y, &u, &v, &B, &D, NULL); | |
116 return err; | |
117 } | |
118 #endif |