Mercurial > dropbear
comparison libtomcrypt/src/hashes/sha2/sha256.c @ 285:1b9e69c058d2
propagate from branch 'au.asn.ucc.matt.ltc.dropbear' (head 20dccfc09627970a312d77fb41dc2970b62689c3)
to branch 'au.asn.ucc.matt.dropbear' (head fdf4a7a3b97ae5046139915de7e40399cceb2c01)
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Wed, 08 Mar 2006 13:23:58 +0000 |
parents | |
children | 0cbe8f6dbf9e |
comparison
equal
deleted
inserted
replaced
281:997e6f7dc01e | 285:1b9e69c058d2 |
---|---|
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis | |
2 * | |
3 * LibTomCrypt is a library that provides various cryptographic | |
4 * algorithms in a highly modular and flexible manner. | |
5 * | |
6 * The library is free for all purposes without any express | |
7 * guarantee it works. | |
8 * | |
9 * Tom St Denis, [email protected], http://libtomcrypt.org | |
10 */ | |
11 #include "tomcrypt.h" | |
12 | |
13 /** | |
14 @file sha256.c | |
15 SHA256 by Tom St Denis | |
16 */ | |
17 | |
18 #ifdef SHA256 | |
19 | |
20 const struct ltc_hash_descriptor sha256_desc = | |
21 { | |
22 "sha256", | |
23 0, | |
24 32, | |
25 64, | |
26 | |
27 /* OID */ | |
28 { 2, 16, 840, 1, 101, 3, 4, 2, 1, }, | |
29 9, | |
30 | |
31 &sha256_init, | |
32 &sha256_process, | |
33 &sha256_done, | |
34 &sha256_test | |
35 }; | |
36 | |
37 #ifdef LTC_SMALL_CODE | |
38 /* the K array */ | |
39 static const unsigned long K[64] = { | |
40 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, | |
41 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, | |
42 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, | |
43 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, | |
44 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, | |
45 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, | |
46 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, | |
47 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, | |
48 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, | |
49 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, | |
50 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, | |
51 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, | |
52 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL | |
53 }; | |
54 #endif | |
55 | |
56 /* Various logical functions */ | |
57 #define Ch(x,y,z) (z ^ (x & (y ^ z))) | |
58 #define Maj(x,y,z) (((x | y) & z) | (x & y)) | |
59 #define S(x, n) RORc((x),(n)) | |
60 #define R(x, n) (((x)&0xFFFFFFFFUL)>>(n)) | |
61 #define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22)) | |
62 #define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25)) | |
63 #define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3)) | |
64 #define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10)) | |
65 | |
66 /* compress 512-bits */ | |
67 #ifdef LTC_CLEAN_STACK | |
68 static int _sha256_compress(hash_state * md, unsigned char *buf) | |
69 #else | |
70 static int sha256_compress(hash_state * md, unsigned char *buf) | |
71 #endif | |
72 { | |
73 ulong32 S[8], W[64], t0, t1; | |
74 #ifdef LTC_SMALL_CODE | |
75 ulong32 t; | |
76 #endif | |
77 int i; | |
78 | |
79 /* copy state into S */ | |
80 for (i = 0; i < 8; i++) { | |
81 S[i] = md->sha256.state[i]; | |
82 } | |
83 | |
84 /* copy the state into 512-bits into W[0..15] */ | |
85 for (i = 0; i < 16; i++) { | |
86 LOAD32H(W[i], buf + (4*i)); | |
87 } | |
88 | |
89 /* fill W[16..63] */ | |
90 for (i = 16; i < 64; i++) { | |
91 W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16]; | |
92 } | |
93 | |
94 /* Compress */ | |
95 #ifdef LTC_SMALL_CODE | |
96 #define RND(a,b,c,d,e,f,g,h,i) \ | |
97 t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \ | |
98 t1 = Sigma0(a) + Maj(a, b, c); \ | |
99 d += t0; \ | |
100 h = t0 + t1; | |
101 | |
102 for (i = 0; i < 64; ++i) { | |
103 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i); | |
104 t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4]; | |
105 S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t; | |
106 } | |
107 #else | |
108 #define RND(a,b,c,d,e,f,g,h,i,ki) \ | |
109 t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i]; \ | |
110 t1 = Sigma0(a) + Maj(a, b, c); \ | |
111 d += t0; \ | |
112 h = t0 + t1; | |
113 | |
114 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,0x428a2f98); | |
115 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,0x71374491); | |
116 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,0xb5c0fbcf); | |
117 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,0xe9b5dba5); | |
118 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,0x3956c25b); | |
119 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,0x59f111f1); | |
120 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,0x923f82a4); | |
121 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,0xab1c5ed5); | |
122 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,0xd807aa98); | |
123 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,0x12835b01); | |
124 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,0x243185be); | |
125 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,0x550c7dc3); | |
126 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,0x72be5d74); | |
127 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,0x80deb1fe); | |
128 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,0x9bdc06a7); | |
129 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,0xc19bf174); | |
130 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,0xe49b69c1); | |
131 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,0xefbe4786); | |
132 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,0x0fc19dc6); | |
133 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,0x240ca1cc); | |
134 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,0x2de92c6f); | |
135 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,0x4a7484aa); | |
136 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,0x5cb0a9dc); | |
137 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,0x76f988da); | |
138 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,0x983e5152); | |
139 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,0xa831c66d); | |
140 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,0xb00327c8); | |
141 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,0xbf597fc7); | |
142 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,0xc6e00bf3); | |
143 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,0xd5a79147); | |
144 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,0x06ca6351); | |
145 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,0x14292967); | |
146 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,0x27b70a85); | |
147 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,0x2e1b2138); | |
148 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,0x4d2c6dfc); | |
149 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,0x53380d13); | |
150 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,0x650a7354); | |
151 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,0x766a0abb); | |
152 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,0x81c2c92e); | |
153 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,0x92722c85); | |
154 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,0xa2bfe8a1); | |
155 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,0xa81a664b); | |
156 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,0xc24b8b70); | |
157 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,0xc76c51a3); | |
158 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,0xd192e819); | |
159 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,0xd6990624); | |
160 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,0xf40e3585); | |
161 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,0x106aa070); | |
162 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,0x19a4c116); | |
163 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,0x1e376c08); | |
164 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,0x2748774c); | |
165 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,0x34b0bcb5); | |
166 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,0x391c0cb3); | |
167 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,0x4ed8aa4a); | |
168 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,0x5b9cca4f); | |
169 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,0x682e6ff3); | |
170 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,0x748f82ee); | |
171 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,0x78a5636f); | |
172 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,0x84c87814); | |
173 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,0x8cc70208); | |
174 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,0x90befffa); | |
175 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,0xa4506ceb); | |
176 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,0xbef9a3f7); | |
177 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,0xc67178f2); | |
178 | |
179 #undef RND | |
180 | |
181 #endif | |
182 | |
183 /* feedback */ | |
184 for (i = 0; i < 8; i++) { | |
185 md->sha256.state[i] = md->sha256.state[i] + S[i]; | |
186 } | |
187 return CRYPT_OK; | |
188 } | |
189 | |
190 #ifdef LTC_CLEAN_STACK | |
191 static int sha256_compress(hash_state * md, unsigned char *buf) | |
192 { | |
193 int err; | |
194 err = _sha256_compress(md, buf); | |
195 burn_stack(sizeof(ulong32) * 74); | |
196 return err; | |
197 } | |
198 #endif | |
199 | |
200 /** | |
201 Initialize the hash state | |
202 @param md The hash state you wish to initialize | |
203 @return CRYPT_OK if successful | |
204 */ | |
205 int sha256_init(hash_state * md) | |
206 { | |
207 LTC_ARGCHK(md != NULL); | |
208 | |
209 md->sha256.curlen = 0; | |
210 md->sha256.length = 0; | |
211 md->sha256.state[0] = 0x6A09E667UL; | |
212 md->sha256.state[1] = 0xBB67AE85UL; | |
213 md->sha256.state[2] = 0x3C6EF372UL; | |
214 md->sha256.state[3] = 0xA54FF53AUL; | |
215 md->sha256.state[4] = 0x510E527FUL; | |
216 md->sha256.state[5] = 0x9B05688CUL; | |
217 md->sha256.state[6] = 0x1F83D9ABUL; | |
218 md->sha256.state[7] = 0x5BE0CD19UL; | |
219 return CRYPT_OK; | |
220 } | |
221 | |
222 /** | |
223 Process a block of memory though the hash | |
224 @param md The hash state | |
225 @param in The data to hash | |
226 @param inlen The length of the data (octets) | |
227 @return CRYPT_OK if successful | |
228 */ | |
229 HASH_PROCESS(sha256_process, sha256_compress, sha256, 64) | |
230 | |
231 /** | |
232 Terminate the hash to get the digest | |
233 @param md The hash state | |
234 @param out [out] The destination of the hash (32 bytes) | |
235 @return CRYPT_OK if successful | |
236 */ | |
237 int sha256_done(hash_state * md, unsigned char *out) | |
238 { | |
239 int i; | |
240 | |
241 LTC_ARGCHK(md != NULL); | |
242 LTC_ARGCHK(out != NULL); | |
243 | |
244 if (md->sha256.curlen >= sizeof(md->sha256.buf)) { | |
245 return CRYPT_INVALID_ARG; | |
246 } | |
247 | |
248 | |
249 /* increase the length of the message */ | |
250 md->sha256.length += md->sha256.curlen * 8; | |
251 | |
252 /* append the '1' bit */ | |
253 md->sha256.buf[md->sha256.curlen++] = (unsigned char)0x80; | |
254 | |
255 /* if the length is currently above 56 bytes we append zeros | |
256 * then compress. Then we can fall back to padding zeros and length | |
257 * encoding like normal. | |
258 */ | |
259 if (md->sha256.curlen > 56) { | |
260 while (md->sha256.curlen < 64) { | |
261 md->sha256.buf[md->sha256.curlen++] = (unsigned char)0; | |
262 } | |
263 sha256_compress(md, md->sha256.buf); | |
264 md->sha256.curlen = 0; | |
265 } | |
266 | |
267 /* pad upto 56 bytes of zeroes */ | |
268 while (md->sha256.curlen < 56) { | |
269 md->sha256.buf[md->sha256.curlen++] = (unsigned char)0; | |
270 } | |
271 | |
272 /* store length */ | |
273 STORE64H(md->sha256.length, md->sha256.buf+56); | |
274 sha256_compress(md, md->sha256.buf); | |
275 | |
276 /* copy output */ | |
277 for (i = 0; i < 8; i++) { | |
278 STORE32H(md->sha256.state[i], out+(4*i)); | |
279 } | |
280 #ifdef LTC_CLEAN_STACK | |
281 zeromem(md, sizeof(hash_state)); | |
282 #endif | |
283 return CRYPT_OK; | |
284 } | |
285 | |
286 /** | |
287 Self-test the hash | |
288 @return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled | |
289 */ | |
290 int sha256_test(void) | |
291 { | |
292 #ifndef LTC_TEST | |
293 return CRYPT_NOP; | |
294 #else | |
295 static const struct { | |
296 char *msg; | |
297 unsigned char hash[32]; | |
298 } tests[] = { | |
299 { "abc", | |
300 { 0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea, | |
301 0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23, | |
302 0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c, | |
303 0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad } | |
304 }, | |
305 { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", | |
306 { 0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8, | |
307 0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39, | |
308 0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67, | |
309 0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1 } | |
310 }, | |
311 }; | |
312 | |
313 int i; | |
314 unsigned char tmp[32]; | |
315 hash_state md; | |
316 | |
317 for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) { | |
318 sha256_init(&md); | |
319 sha256_process(&md, (unsigned char*)tests[i].msg, (unsigned long)strlen(tests[i].msg)); | |
320 sha256_done(&md, tmp); | |
321 if (memcmp(tmp, tests[i].hash, 32) != 0) { | |
322 return CRYPT_FAIL_TESTVECTOR; | |
323 } | |
324 } | |
325 return CRYPT_OK; | |
326 #endif | |
327 } | |
328 | |
329 #ifdef SHA224 | |
330 #include "sha224.c" | |
331 #endif | |
332 | |
333 #endif | |
334 | |
335 | |
336 | |
337 /* $Source: /cvs/libtom/libtomcrypt/src/hashes/sha2/sha256.c,v $ */ | |
338 /* $Revision: 1.5 $ */ | |
339 /* $Date: 2005/05/23 02:42:07 $ */ |