comparison libtomcrypt/src/pk/pkcs1/pkcs_1_pss_encode.c @ 285:1b9e69c058d2

propagate from branch 'au.asn.ucc.matt.ltc.dropbear' (head 20dccfc09627970a312d77fb41dc2970b62689c3) to branch 'au.asn.ucc.matt.dropbear' (head fdf4a7a3b97ae5046139915de7e40399cceb2c01)
author Matt Johnston <matt@ucc.asn.au>
date Wed, 08 Mar 2006 13:23:58 +0000
parents
children 0cbe8f6dbf9e
comparison
equal deleted inserted replaced
281:997e6f7dc01e 285:1b9e69c058d2
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
2 *
3 * LibTomCrypt is a library that provides various cryptographic
4 * algorithms in a highly modular and flexible manner.
5 *
6 * The library is free for all purposes without any express
7 * guarantee it works.
8 *
9 * Tom St Denis, [email protected], http://libtomcrypt.org
10 */
11 #include "tomcrypt.h"
12
13 /**
14 @file pkcs_1_pss_encode.c
15 PKCS #1 PSS Signature Padding, Tom St Denis
16 */
17
18 #ifdef PKCS_1
19
20 /**
21 PKCS #1 v2.00 Signature Encoding
22 @param msghash The hash to encode
23 @param msghashlen The length of the hash (octets)
24 @param saltlen The length of the salt desired (octets)
25 @param prng An active PRNG context
26 @param prng_idx The index of the PRNG desired
27 @param hash_idx The index of the hash desired
28 @param modulus_bitlen The bit length of the RSA modulus
29 @param out [out] The destination of the encoding
30 @param outlen [in/out] The max size and resulting size of the encoded data
31 @return CRYPT_OK if successful
32 */
33 int pkcs_1_pss_encode(const unsigned char *msghash, unsigned long msghashlen,
34 unsigned long saltlen, prng_state *prng,
35 int prng_idx, int hash_idx,
36 unsigned long modulus_bitlen,
37 unsigned char *out, unsigned long *outlen)
38 {
39 unsigned char *DB, *mask, *salt, *hash;
40 unsigned long x, y, hLen, modulus_len;
41 int err;
42 hash_state md;
43
44 LTC_ARGCHK(msghash != NULL);
45 LTC_ARGCHK(out != NULL);
46 LTC_ARGCHK(outlen != NULL);
47
48 /* ensure hash and PRNG are valid */
49 if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) {
50 return err;
51 }
52 if ((err = prng_is_valid(prng_idx)) != CRYPT_OK) {
53 return err;
54 }
55
56 hLen = hash_descriptor[hash_idx].hashsize;
57 modulus_len = (modulus_bitlen>>3) + (modulus_bitlen & 7 ? 1 : 0);
58
59 /* check sizes */
60 if ((saltlen > modulus_len) || (modulus_len < hLen + saltlen + 2)) {
61 return CRYPT_PK_INVALID_SIZE;
62 }
63
64 /* allocate ram for DB/mask/salt/hash of size modulus_len */
65 DB = XMALLOC(modulus_len);
66 mask = XMALLOC(modulus_len);
67 salt = XMALLOC(modulus_len);
68 hash = XMALLOC(modulus_len);
69 if (DB == NULL || mask == NULL || salt == NULL || hash == NULL) {
70 if (DB != NULL) {
71 XFREE(DB);
72 }
73 if (mask != NULL) {
74 XFREE(mask);
75 }
76 if (salt != NULL) {
77 XFREE(salt);
78 }
79 if (hash != NULL) {
80 XFREE(hash);
81 }
82 return CRYPT_MEM;
83 }
84
85
86 /* generate random salt */
87 if (saltlen > 0) {
88 if (prng_descriptor[prng_idx].read(salt, saltlen, prng) != saltlen) {
89 err = CRYPT_ERROR_READPRNG;
90 goto LBL_ERR;
91 }
92 }
93
94 /* M = (eight) 0x00 || msghash || salt, hash = H(M) */
95 if ((err = hash_descriptor[hash_idx].init(&md)) != CRYPT_OK) {
96 goto LBL_ERR;
97 }
98 zeromem(DB, 8);
99 if ((err = hash_descriptor[hash_idx].process(&md, DB, 8)) != CRYPT_OK) {
100 goto LBL_ERR;
101 }
102 if ((err = hash_descriptor[hash_idx].process(&md, msghash, msghashlen)) != CRYPT_OK) {
103 goto LBL_ERR;
104 }
105 if ((err = hash_descriptor[hash_idx].process(&md, salt, saltlen)) != CRYPT_OK) {
106 goto LBL_ERR;
107 }
108 if ((err = hash_descriptor[hash_idx].done(&md, hash)) != CRYPT_OK) {
109 goto LBL_ERR;
110 }
111
112 /* generate DB = PS || 0x01 || salt, PS == modulus_len - saltlen - hLen - 2 zero bytes */
113 x = 0;
114 XMEMSET(DB + x, 0, modulus_len - saltlen - hLen - 2);
115 x += modulus_len - saltlen - hLen - 2;
116 DB[x++] = 0x01;
117 XMEMCPY(DB + x, salt, saltlen);
118 x += saltlen;
119
120 /* generate mask of length modulus_len - hLen - 1 from hash */
121 if ((err = pkcs_1_mgf1(hash, hLen, hash_idx, mask, modulus_len - hLen - 1)) != CRYPT_OK) {
122 goto LBL_ERR;
123 }
124
125 /* xor against DB */
126 for (y = 0; y < (modulus_len - hLen - 1); y++) {
127 DB[y] ^= mask[y];
128 }
129
130 /* output is DB || hash || 0xBC */
131 if (*outlen < modulus_len) {
132 err = CRYPT_BUFFER_OVERFLOW;
133 goto LBL_ERR;
134 }
135
136 /* DB len = modulus_len - hLen - 1 */
137 y = 0;
138 XMEMCPY(out + y, DB, modulus_len - hLen - 1);
139 y += modulus_len - hLen - 1;
140
141 /* hash */
142 XMEMCPY(out + y, hash, hLen);
143 y += hLen;
144
145 /* 0xBC */
146 out[y] = 0xBC;
147
148 /* now clear the 8*modulus_len - modulus_bitlen most significant bits */
149 out[0] &= 0xFF >> ((modulus_len<<3) - (modulus_bitlen-1));
150
151 /* store output size */
152 *outlen = modulus_len;
153 err = CRYPT_OK;
154 LBL_ERR:
155 #ifdef LTC_CLEAN_STACK
156 zeromem(DB, modulus_len);
157 zeromem(mask, modulus_len);
158 zeromem(salt, modulus_len);
159 zeromem(hash, modulus_len);
160 #endif
161
162 XFREE(hash);
163 XFREE(salt);
164 XFREE(mask);
165 XFREE(DB);
166
167 return err;
168 }
169
170 #endif /* PKCS_1 */
171
172 /* $Source: /cvs/libtom/libtomcrypt/src/pk/pkcs1/pkcs_1_pss_encode.c,v $ */
173 /* $Revision: 1.4 $ */
174 /* $Date: 2005/05/05 14:35:59 $ */