comparison src/hashes/rmd128.c @ 191:1c15b283127b libtomcrypt-orig

Import of libtomcrypt 1.02 with manual path rename rearrangement etc
author Matt Johnston <matt@ucc.asn.au>
date Fri, 06 May 2005 13:23:02 +0000
parents
children 39d5d58461d6
comparison
equal deleted inserted replaced
143:5d99163f7e32 191:1c15b283127b
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
2 *
3 * LibTomCrypt is a library that provides various cryptographic
4 * algorithms in a highly modular and flexible manner.
5 *
6 * The library is free for all purposes without any express
7 * guarantee it works.
8 *
9 * Tom St Denis, [email protected], http://libtomcrypt.org
10 */
11 #include "tomcrypt.h"
12
13 /**
14 @param rmd128.c
15 RMD128 Hash function
16 */
17
18 /* Implementation of RIPEMD-128 based on the source by Antoon Bosselaers, ESAT-COSIC
19 *
20 * This source has been radically overhauled to be portable and work within
21 * the LibTomCrypt API by Tom St Denis
22 */
23
24 #ifdef RIPEMD128
25
26 const struct ltc_hash_descriptor rmd128_desc =
27 {
28 "rmd128",
29 8,
30 16,
31 64,
32
33 /* DER identifier (not supported) */
34 { 0x00 },
35 0,
36
37 &rmd128_init,
38 &rmd128_process,
39 &rmd128_done,
40 &rmd128_test
41 };
42
43 /* the four basic functions F(), G() and H() */
44 #define F(x, y, z) ((x) ^ (y) ^ (z))
45 #define G(x, y, z) (((x) & (y)) | (~(x) & (z)))
46 #define H(x, y, z) (((x) | ~(y)) ^ (z))
47 #define I(x, y, z) (((x) & (z)) | ((y) & ~(z)))
48
49 /* the eight basic operations FF() through III() */
50 #define FF(a, b, c, d, x, s) \
51 (a) += F((b), (c), (d)) + (x);\
52 (a) = ROLc((a), (s));
53
54 #define GG(a, b, c, d, x, s) \
55 (a) += G((b), (c), (d)) + (x) + 0x5a827999UL;\
56 (a) = ROLc((a), (s));
57
58 #define HH(a, b, c, d, x, s) \
59 (a) += H((b), (c), (d)) + (x) + 0x6ed9eba1UL;\
60 (a) = ROLc((a), (s));
61
62 #define II(a, b, c, d, x, s) \
63 (a) += I((b), (c), (d)) + (x) + 0x8f1bbcdcUL;\
64 (a) = ROLc((a), (s));
65
66 #define FFF(a, b, c, d, x, s) \
67 (a) += F((b), (c), (d)) + (x);\
68 (a) = ROLc((a), (s));
69
70 #define GGG(a, b, c, d, x, s) \
71 (a) += G((b), (c), (d)) + (x) + 0x6d703ef3UL;\
72 (a) = ROLc((a), (s));
73
74 #define HHH(a, b, c, d, x, s) \
75 (a) += H((b), (c), (d)) + (x) + 0x5c4dd124UL;\
76 (a) = ROLc((a), (s));
77
78 #define III(a, b, c, d, x, s) \
79 (a) += I((b), (c), (d)) + (x) + 0x50a28be6UL;\
80 (a) = ROLc((a), (s));
81
82 #ifdef LTC_CLEAN_STACK
83 static int _rmd128_compress(hash_state *md, unsigned char *buf)
84 #else
85 static int rmd128_compress(hash_state *md, unsigned char *buf)
86 #endif
87 {
88 ulong32 aa,bb,cc,dd,aaa,bbb,ccc,ddd,X[16];
89 int i;
90
91 /* load words X */
92 for (i = 0; i < 16; i++){
93 LOAD32L(X[i], buf + (4 * i));
94 }
95
96 /* load state */
97 aa = aaa = md->rmd128.state[0];
98 bb = bbb = md->rmd128.state[1];
99 cc = ccc = md->rmd128.state[2];
100 dd = ddd = md->rmd128.state[3];
101
102 /* round 1 */
103 FF(aa, bb, cc, dd, X[ 0], 11);
104 FF(dd, aa, bb, cc, X[ 1], 14);
105 FF(cc, dd, aa, bb, X[ 2], 15);
106 FF(bb, cc, dd, aa, X[ 3], 12);
107 FF(aa, bb, cc, dd, X[ 4], 5);
108 FF(dd, aa, bb, cc, X[ 5], 8);
109 FF(cc, dd, aa, bb, X[ 6], 7);
110 FF(bb, cc, dd, aa, X[ 7], 9);
111 FF(aa, bb, cc, dd, X[ 8], 11);
112 FF(dd, aa, bb, cc, X[ 9], 13);
113 FF(cc, dd, aa, bb, X[10], 14);
114 FF(bb, cc, dd, aa, X[11], 15);
115 FF(aa, bb, cc, dd, X[12], 6);
116 FF(dd, aa, bb, cc, X[13], 7);
117 FF(cc, dd, aa, bb, X[14], 9);
118 FF(bb, cc, dd, aa, X[15], 8);
119
120 /* round 2 */
121 GG(aa, bb, cc, dd, X[ 7], 7);
122 GG(dd, aa, bb, cc, X[ 4], 6);
123 GG(cc, dd, aa, bb, X[13], 8);
124 GG(bb, cc, dd, aa, X[ 1], 13);
125 GG(aa, bb, cc, dd, X[10], 11);
126 GG(dd, aa, bb, cc, X[ 6], 9);
127 GG(cc, dd, aa, bb, X[15], 7);
128 GG(bb, cc, dd, aa, X[ 3], 15);
129 GG(aa, bb, cc, dd, X[12], 7);
130 GG(dd, aa, bb, cc, X[ 0], 12);
131 GG(cc, dd, aa, bb, X[ 9], 15);
132 GG(bb, cc, dd, aa, X[ 5], 9);
133 GG(aa, bb, cc, dd, X[ 2], 11);
134 GG(dd, aa, bb, cc, X[14], 7);
135 GG(cc, dd, aa, bb, X[11], 13);
136 GG(bb, cc, dd, aa, X[ 8], 12);
137
138 /* round 3 */
139 HH(aa, bb, cc, dd, X[ 3], 11);
140 HH(dd, aa, bb, cc, X[10], 13);
141 HH(cc, dd, aa, bb, X[14], 6);
142 HH(bb, cc, dd, aa, X[ 4], 7);
143 HH(aa, bb, cc, dd, X[ 9], 14);
144 HH(dd, aa, bb, cc, X[15], 9);
145 HH(cc, dd, aa, bb, X[ 8], 13);
146 HH(bb, cc, dd, aa, X[ 1], 15);
147 HH(aa, bb, cc, dd, X[ 2], 14);
148 HH(dd, aa, bb, cc, X[ 7], 8);
149 HH(cc, dd, aa, bb, X[ 0], 13);
150 HH(bb, cc, dd, aa, X[ 6], 6);
151 HH(aa, bb, cc, dd, X[13], 5);
152 HH(dd, aa, bb, cc, X[11], 12);
153 HH(cc, dd, aa, bb, X[ 5], 7);
154 HH(bb, cc, dd, aa, X[12], 5);
155
156 /* round 4 */
157 II(aa, bb, cc, dd, X[ 1], 11);
158 II(dd, aa, bb, cc, X[ 9], 12);
159 II(cc, dd, aa, bb, X[11], 14);
160 II(bb, cc, dd, aa, X[10], 15);
161 II(aa, bb, cc, dd, X[ 0], 14);
162 II(dd, aa, bb, cc, X[ 8], 15);
163 II(cc, dd, aa, bb, X[12], 9);
164 II(bb, cc, dd, aa, X[ 4], 8);
165 II(aa, bb, cc, dd, X[13], 9);
166 II(dd, aa, bb, cc, X[ 3], 14);
167 II(cc, dd, aa, bb, X[ 7], 5);
168 II(bb, cc, dd, aa, X[15], 6);
169 II(aa, bb, cc, dd, X[14], 8);
170 II(dd, aa, bb, cc, X[ 5], 6);
171 II(cc, dd, aa, bb, X[ 6], 5);
172 II(bb, cc, dd, aa, X[ 2], 12);
173
174 /* parallel round 1 */
175 III(aaa, bbb, ccc, ddd, X[ 5], 8);
176 III(ddd, aaa, bbb, ccc, X[14], 9);
177 III(ccc, ddd, aaa, bbb, X[ 7], 9);
178 III(bbb, ccc, ddd, aaa, X[ 0], 11);
179 III(aaa, bbb, ccc, ddd, X[ 9], 13);
180 III(ddd, aaa, bbb, ccc, X[ 2], 15);
181 III(ccc, ddd, aaa, bbb, X[11], 15);
182 III(bbb, ccc, ddd, aaa, X[ 4], 5);
183 III(aaa, bbb, ccc, ddd, X[13], 7);
184 III(ddd, aaa, bbb, ccc, X[ 6], 7);
185 III(ccc, ddd, aaa, bbb, X[15], 8);
186 III(bbb, ccc, ddd, aaa, X[ 8], 11);
187 III(aaa, bbb, ccc, ddd, X[ 1], 14);
188 III(ddd, aaa, bbb, ccc, X[10], 14);
189 III(ccc, ddd, aaa, bbb, X[ 3], 12);
190 III(bbb, ccc, ddd, aaa, X[12], 6);
191
192 /* parallel round 2 */
193 HHH(aaa, bbb, ccc, ddd, X[ 6], 9);
194 HHH(ddd, aaa, bbb, ccc, X[11], 13);
195 HHH(ccc, ddd, aaa, bbb, X[ 3], 15);
196 HHH(bbb, ccc, ddd, aaa, X[ 7], 7);
197 HHH(aaa, bbb, ccc, ddd, X[ 0], 12);
198 HHH(ddd, aaa, bbb, ccc, X[13], 8);
199 HHH(ccc, ddd, aaa, bbb, X[ 5], 9);
200 HHH(bbb, ccc, ddd, aaa, X[10], 11);
201 HHH(aaa, bbb, ccc, ddd, X[14], 7);
202 HHH(ddd, aaa, bbb, ccc, X[15], 7);
203 HHH(ccc, ddd, aaa, bbb, X[ 8], 12);
204 HHH(bbb, ccc, ddd, aaa, X[12], 7);
205 HHH(aaa, bbb, ccc, ddd, X[ 4], 6);
206 HHH(ddd, aaa, bbb, ccc, X[ 9], 15);
207 HHH(ccc, ddd, aaa, bbb, X[ 1], 13);
208 HHH(bbb, ccc, ddd, aaa, X[ 2], 11);
209
210 /* parallel round 3 */
211 GGG(aaa, bbb, ccc, ddd, X[15], 9);
212 GGG(ddd, aaa, bbb, ccc, X[ 5], 7);
213 GGG(ccc, ddd, aaa, bbb, X[ 1], 15);
214 GGG(bbb, ccc, ddd, aaa, X[ 3], 11);
215 GGG(aaa, bbb, ccc, ddd, X[ 7], 8);
216 GGG(ddd, aaa, bbb, ccc, X[14], 6);
217 GGG(ccc, ddd, aaa, bbb, X[ 6], 6);
218 GGG(bbb, ccc, ddd, aaa, X[ 9], 14);
219 GGG(aaa, bbb, ccc, ddd, X[11], 12);
220 GGG(ddd, aaa, bbb, ccc, X[ 8], 13);
221 GGG(ccc, ddd, aaa, bbb, X[12], 5);
222 GGG(bbb, ccc, ddd, aaa, X[ 2], 14);
223 GGG(aaa, bbb, ccc, ddd, X[10], 13);
224 GGG(ddd, aaa, bbb, ccc, X[ 0], 13);
225 GGG(ccc, ddd, aaa, bbb, X[ 4], 7);
226 GGG(bbb, ccc, ddd, aaa, X[13], 5);
227
228 /* parallel round 4 */
229 FFF(aaa, bbb, ccc, ddd, X[ 8], 15);
230 FFF(ddd, aaa, bbb, ccc, X[ 6], 5);
231 FFF(ccc, ddd, aaa, bbb, X[ 4], 8);
232 FFF(bbb, ccc, ddd, aaa, X[ 1], 11);
233 FFF(aaa, bbb, ccc, ddd, X[ 3], 14);
234 FFF(ddd, aaa, bbb, ccc, X[11], 14);
235 FFF(ccc, ddd, aaa, bbb, X[15], 6);
236 FFF(bbb, ccc, ddd, aaa, X[ 0], 14);
237 FFF(aaa, bbb, ccc, ddd, X[ 5], 6);
238 FFF(ddd, aaa, bbb, ccc, X[12], 9);
239 FFF(ccc, ddd, aaa, bbb, X[ 2], 12);
240 FFF(bbb, ccc, ddd, aaa, X[13], 9);
241 FFF(aaa, bbb, ccc, ddd, X[ 9], 12);
242 FFF(ddd, aaa, bbb, ccc, X[ 7], 5);
243 FFF(ccc, ddd, aaa, bbb, X[10], 15);
244 FFF(bbb, ccc, ddd, aaa, X[14], 8);
245
246 /* combine results */
247 ddd += cc + md->rmd128.state[1]; /* final result for MDbuf[0] */
248 md->rmd128.state[1] = md->rmd128.state[2] + dd + aaa;
249 md->rmd128.state[2] = md->rmd128.state[3] + aa + bbb;
250 md->rmd128.state[3] = md->rmd128.state[0] + bb + ccc;
251 md->rmd128.state[0] = ddd;
252
253 return CRYPT_OK;
254 }
255
256 #ifdef LTC_CLEAN_STACK
257 static int rmd128_compress(hash_state *md, unsigned char *buf)
258 {
259 int err;
260 err = _rmd128_compress(md, buf);
261 burn_stack(sizeof(ulong32) * 24 + sizeof(int));
262 return err;
263 }
264 #endif
265
266 /**
267 Initialize the hash state
268 @param md The hash state you wish to initialize
269 @return CRYPT_OK if successful
270 */
271 int rmd128_init(hash_state * md)
272 {
273 LTC_ARGCHK(md != NULL);
274 md->rmd128.state[0] = 0x67452301UL;
275 md->rmd128.state[1] = 0xefcdab89UL;
276 md->rmd128.state[2] = 0x98badcfeUL;
277 md->rmd128.state[3] = 0x10325476UL;
278 md->rmd128.curlen = 0;
279 md->rmd128.length = 0;
280 return CRYPT_OK;
281 }
282
283 /**
284 Process a block of memory though the hash
285 @param md The hash state
286 @param in The data to hash
287 @param inlen The length of the data (octets)
288 @return CRYPT_OK if successful
289 */
290 HASH_PROCESS(rmd128_process, rmd128_compress, rmd128, 64)
291
292 /**
293 Terminate the hash to get the digest
294 @param md The hash state
295 @param out [out] The destination of the hash (16 bytes)
296 @return CRYPT_OK if successful
297 */
298 int rmd128_done(hash_state * md, unsigned char *out)
299 {
300 int i;
301
302 LTC_ARGCHK(md != NULL);
303 LTC_ARGCHK(out != NULL);
304
305 if (md->rmd128.curlen >= sizeof(md->rmd128.buf)) {
306 return CRYPT_INVALID_ARG;
307 }
308
309
310 /* increase the length of the message */
311 md->rmd128.length += md->rmd128.curlen * 8;
312
313 /* append the '1' bit */
314 md->rmd128.buf[md->rmd128.curlen++] = (unsigned char)0x80;
315
316 /* if the length is currently above 56 bytes we append zeros
317 * then compress. Then we can fall back to padding zeros and length
318 * encoding like normal.
319 */
320 if (md->rmd128.curlen > 56) {
321 while (md->rmd128.curlen < 64) {
322 md->rmd128.buf[md->rmd128.curlen++] = (unsigned char)0;
323 }
324 rmd128_compress(md, md->rmd128.buf);
325 md->rmd128.curlen = 0;
326 }
327
328 /* pad upto 56 bytes of zeroes */
329 while (md->rmd128.curlen < 56) {
330 md->rmd128.buf[md->rmd128.curlen++] = (unsigned char)0;
331 }
332
333 /* store length */
334 STORE64L(md->rmd128.length, md->rmd128.buf+56);
335 rmd128_compress(md, md->rmd128.buf);
336
337 /* copy output */
338 for (i = 0; i < 4; i++) {
339 STORE32L(md->rmd128.state[i], out+(4*i));
340 }
341 #ifdef LTC_CLEAN_STACK
342 zeromem(md, sizeof(hash_state));
343 #endif
344 return CRYPT_OK;
345 }
346
347 /**
348 Self-test the hash
349 @return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
350 */
351 int rmd128_test(void)
352 {
353 #ifndef LTC_TEST
354 return CRYPT_NOP;
355 #else
356 static const struct {
357 char *msg;
358 unsigned char md[16];
359 } tests[] = {
360 { "",
361 { 0xcd, 0xf2, 0x62, 0x13, 0xa1, 0x50, 0xdc, 0x3e,
362 0xcb, 0x61, 0x0f, 0x18, 0xf6, 0xb3, 0x8b, 0x46 }
363 },
364 { "a",
365 { 0x86, 0xbe, 0x7a, 0xfa, 0x33, 0x9d, 0x0f, 0xc7,
366 0xcf, 0xc7, 0x85, 0xe7, 0x2f, 0x57, 0x8d, 0x33 }
367 },
368 { "abc",
369 { 0xc1, 0x4a, 0x12, 0x19, 0x9c, 0x66, 0xe4, 0xba,
370 0x84, 0x63, 0x6b, 0x0f, 0x69, 0x14, 0x4c, 0x77 }
371 },
372 { "message digest",
373 { 0x9e, 0x32, 0x7b, 0x3d, 0x6e, 0x52, 0x30, 0x62,
374 0xaf, 0xc1, 0x13, 0x2d, 0x7d, 0xf9, 0xd1, 0xb8 }
375 },
376 { "abcdefghijklmnopqrstuvwxyz",
377 { 0xfd, 0x2a, 0xa6, 0x07, 0xf7, 0x1d, 0xc8, 0xf5,
378 0x10, 0x71, 0x49, 0x22, 0xb3, 0x71, 0x83, 0x4e }
379 },
380 { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
381 { 0xd1, 0xe9, 0x59, 0xeb, 0x17, 0x9c, 0x91, 0x1f,
382 0xae, 0xa4, 0x62, 0x4c, 0x60, 0xc5, 0xc7, 0x02 }
383 }
384 };
385 int x;
386 unsigned char buf[16];
387 hash_state md;
388
389 for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) {
390 rmd128_init(&md);
391 rmd128_process(&md, (unsigned char *)tests[x].msg, strlen(tests[x].msg));
392 rmd128_done(&md, buf);
393 if (memcmp(buf, tests[x].md, 16) != 0) {
394 #if 0
395 printf("Failed test %d\n", x);
396 #endif
397 return CRYPT_FAIL_TESTVECTOR;
398 }
399 }
400 return CRYPT_OK;
401 #endif
402 }
403
404 #endif
405