comparison src/hashes/sha1.c @ 191:1c15b283127b libtomcrypt-orig

Import of libtomcrypt 1.02 with manual path rename rearrangement etc
author Matt Johnston <matt@ucc.asn.au>
date Fri, 06 May 2005 13:23:02 +0000
parents
children 9cc34777b479 39d5d58461d6
comparison
equal deleted inserted replaced
143:5d99163f7e32 191:1c15b283127b
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
2 *
3 * LibTomCrypt is a library that provides various cryptographic
4 * algorithms in a highly modular and flexible manner.
5 *
6 * The library is free for all purposes without any express
7 * guarantee it works.
8 *
9 * Tom St Denis, [email protected], http://libtomcrypt.org
10 */
11 #include "tomcrypt.h"
12
13 /**
14 @file sha1.c
15 SHA1 code by Tom St Denis
16 */
17
18
19 #ifdef SHA1
20
21 const struct ltc_hash_descriptor sha1_desc =
22 {
23 "sha1",
24 2,
25 20,
26 64,
27
28 /* DER identifier */
29 { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B, 0x0E,
30 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14 },
31 15,
32
33 &sha1_init,
34 &sha1_process,
35 &sha1_done,
36 &sha1_test
37 };
38
39 #define F0(x,y,z) (z ^ (x & (y ^ z)))
40 #define F1(x,y,z) (x ^ y ^ z)
41 #define F2(x,y,z) ((x & y) | (z & (x | y)))
42 #define F3(x,y,z) (x ^ y ^ z)
43
44 #ifdef LTC_CLEAN_STACK
45 static int _sha1_compress(hash_state *md, unsigned char *buf)
46 #else
47 static int sha1_compress(hash_state *md, unsigned char *buf)
48 #endif
49 {
50 ulong32 a,b,c,d,e,W[80],i;
51 #ifdef LTC_SMALL_CODE
52 ulong32 t;
53 #endif
54
55 /* copy the state into 512-bits into W[0..15] */
56 for (i = 0; i < 16; i++) {
57 LOAD32H(W[i], buf + (4*i));
58 }
59
60 /* copy state */
61 a = md->sha1.state[0];
62 b = md->sha1.state[1];
63 c = md->sha1.state[2];
64 d = md->sha1.state[3];
65 e = md->sha1.state[4];
66
67 /* expand it */
68 for (i = 16; i < 80; i++) {
69 W[i] = ROL(W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16], 1);
70 }
71
72 /* compress */
73 /* round one */
74 #define FF0(a,b,c,d,e,i) e = (ROLc(a, 5) + F0(b,c,d) + e + W[i] + 0x5a827999UL); b = ROLc(b, 30);
75 #define FF1(a,b,c,d,e,i) e = (ROLc(a, 5) + F1(b,c,d) + e + W[i] + 0x6ed9eba1UL); b = ROLc(b, 30);
76 #define FF2(a,b,c,d,e,i) e = (ROLc(a, 5) + F2(b,c,d) + e + W[i] + 0x8f1bbcdcUL); b = ROLc(b, 30);
77 #define FF3(a,b,c,d,e,i) e = (ROLc(a, 5) + F3(b,c,d) + e + W[i] + 0xca62c1d6UL); b = ROLc(b, 30);
78
79 #ifdef LTC_SMALL_CODE
80
81 for (i = 0; i < 20; ) {
82 FF0(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;
83 }
84
85 for (; i < 40; ) {
86 FF1(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;
87 }
88
89 for (; i < 60; ) {
90 FF2(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;
91 }
92
93 for (; i < 80; ) {
94 FF3(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;
95 }
96
97 #else
98
99 for (i = 0; i < 20; ) {
100 FF0(a,b,c,d,e,i++);
101 FF0(e,a,b,c,d,i++);
102 FF0(d,e,a,b,c,i++);
103 FF0(c,d,e,a,b,i++);
104 FF0(b,c,d,e,a,i++);
105 }
106
107 /* round two */
108 for (; i < 40; ) {
109 FF1(a,b,c,d,e,i++);
110 FF1(e,a,b,c,d,i++);
111 FF1(d,e,a,b,c,i++);
112 FF1(c,d,e,a,b,i++);
113 FF1(b,c,d,e,a,i++);
114 }
115
116 /* round three */
117 for (; i < 60; ) {
118 FF2(a,b,c,d,e,i++);
119 FF2(e,a,b,c,d,i++);
120 FF2(d,e,a,b,c,i++);
121 FF2(c,d,e,a,b,i++);
122 FF2(b,c,d,e,a,i++);
123 }
124
125 /* round four */
126 for (; i < 80; ) {
127 FF3(a,b,c,d,e,i++);
128 FF3(e,a,b,c,d,i++);
129 FF3(d,e,a,b,c,i++);
130 FF3(c,d,e,a,b,i++);
131 FF3(b,c,d,e,a,i++);
132 }
133 #endif
134
135 #undef FF0
136 #undef FF1
137 #undef FF2
138 #undef FF3
139
140 /* store */
141 md->sha1.state[0] = md->sha1.state[0] + a;
142 md->sha1.state[1] = md->sha1.state[1] + b;
143 md->sha1.state[2] = md->sha1.state[2] + c;
144 md->sha1.state[3] = md->sha1.state[3] + d;
145 md->sha1.state[4] = md->sha1.state[4] + e;
146
147 return CRYPT_OK;
148 }
149
150 #ifdef LTC_CLEAN_STACK
151 static int sha1_compress(hash_state *md, unsigned char *buf)
152 {
153 int err;
154 err = _sha1_compress(md, buf);
155 burn_stack(sizeof(ulong32) * 87);
156 return err;
157 }
158 #endif
159
160 /**
161 Initialize the hash state
162 @param md The hash state you wish to initialize
163 @return CRYPT_OK if successful
164 */
165 int sha1_init(hash_state * md)
166 {
167 LTC_ARGCHK(md != NULL);
168 md->sha1.state[0] = 0x67452301UL;
169 md->sha1.state[1] = 0xefcdab89UL;
170 md->sha1.state[2] = 0x98badcfeUL;
171 md->sha1.state[3] = 0x10325476UL;
172 md->sha1.state[4] = 0xc3d2e1f0UL;
173 md->sha1.curlen = 0;
174 md->sha1.length = 0;
175 return CRYPT_OK;
176 }
177
178 /**
179 Process a block of memory though the hash
180 @param md The hash state
181 @param in The data to hash
182 @param inlen The length of the data (octets)
183 @return CRYPT_OK if successful
184 */
185 HASH_PROCESS(sha1_process, sha1_compress, sha1, 64)
186
187 /**
188 Terminate the hash to get the digest
189 @param md The hash state
190 @param out [out] The destination of the hash (20 bytes)
191 @return CRYPT_OK if successful
192 */
193 int sha1_done(hash_state * md, unsigned char *out)
194 {
195 int i;
196
197 LTC_ARGCHK(md != NULL);
198 LTC_ARGCHK(out != NULL);
199
200 if (md->sha1.curlen >= sizeof(md->sha1.buf)) {
201 return CRYPT_INVALID_ARG;
202 }
203
204 /* increase the length of the message */
205 md->sha1.length += md->sha1.curlen * 8;
206
207 /* append the '1' bit */
208 md->sha1.buf[md->sha1.curlen++] = (unsigned char)0x80;
209
210 /* if the length is currently above 56 bytes we append zeros
211 * then compress. Then we can fall back to padding zeros and length
212 * encoding like normal.
213 */
214 if (md->sha1.curlen > 56) {
215 while (md->sha1.curlen < 64) {
216 md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;
217 }
218 sha1_compress(md, md->sha1.buf);
219 md->sha1.curlen = 0;
220 }
221
222 /* pad upto 56 bytes of zeroes */
223 while (md->sha1.curlen < 56) {
224 md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;
225 }
226
227 /* store length */
228 STORE64H(md->sha1.length, md->sha1.buf+56);
229 sha1_compress(md, md->sha1.buf);
230
231 /* copy output */
232 for (i = 0; i < 5; i++) {
233 STORE32H(md->sha1.state[i], out+(4*i));
234 }
235 #ifdef LTC_CLEAN_STACK
236 zeromem(md, sizeof(hash_state));
237 #endif
238 return CRYPT_OK;
239 }
240
241 /**
242 Self-test the hash
243 @return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
244 */
245 int sha1_test(void)
246 {
247 #ifndef LTC_TEST
248 return CRYPT_NOP;
249 #else
250 static const struct {
251 char *msg;
252 unsigned char hash[20];
253 } tests[] = {
254 { "abc",
255 { 0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a,
256 0xba, 0x3e, 0x25, 0x71, 0x78, 0x50, 0xc2, 0x6c,
257 0x9c, 0xd0, 0xd8, 0x9d }
258 },
259 { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
260 { 0x84, 0x98, 0x3E, 0x44, 0x1C, 0x3B, 0xD2, 0x6E,
261 0xBA, 0xAE, 0x4A, 0xA1, 0xF9, 0x51, 0x29, 0xE5,
262 0xE5, 0x46, 0x70, 0xF1 }
263 }
264 };
265
266 int i;
267 unsigned char tmp[20];
268 hash_state md;
269
270 for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
271 sha1_init(&md);
272 sha1_process(&md, (unsigned char*)tests[i].msg, (unsigned long)strlen(tests[i].msg));
273 sha1_done(&md, tmp);
274 if (memcmp(tmp, tests[i].hash, 20) != 0) {
275 return CRYPT_FAIL_TESTVECTOR;
276 }
277 }
278 return CRYPT_OK;
279 #endif
280 }
281
282 #endif
283
284