comparison src/hashes/sha2/sha256.c @ 191:1c15b283127b libtomcrypt-orig

Import of libtomcrypt 1.02 with manual path rename rearrangement etc
author Matt Johnston <matt@ucc.asn.au>
date Fri, 06 May 2005 13:23:02 +0000
parents
children 39d5d58461d6
comparison
equal deleted inserted replaced
143:5d99163f7e32 191:1c15b283127b
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
2 *
3 * LibTomCrypt is a library that provides various cryptographic
4 * algorithms in a highly modular and flexible manner.
5 *
6 * The library is free for all purposes without any express
7 * guarantee it works.
8 *
9 * Tom St Denis, [email protected], http://libtomcrypt.org
10 */
11 #include "tomcrypt.h"
12
13 /**
14 @file sha256.c
15 SHA256 by Tom St Denis
16 */
17
18 #ifdef SHA256
19
20 const struct ltc_hash_descriptor sha256_desc =
21 {
22 "sha256",
23 0,
24 32,
25 64,
26
27 /* DER identifier */
28 { 0x30, 0x31, 0x30, 0x0D, 0x06, 0x09, 0x60, 0x86,
29 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05,
30 0x00, 0x04, 0x20 },
31 19,
32
33 &sha256_init,
34 &sha256_process,
35 &sha256_done,
36 &sha256_test
37 };
38
39 #ifdef LTC_SMALL_CODE
40 /* the K array */
41 static const unsigned long K[64] = {
42 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,
43 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,
44 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,
45 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
46 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,
47 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,
48 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,
49 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
50 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,
51 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,
52 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,
53 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
54 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
55 };
56 #endif
57
58 /* Various logical functions */
59 #define Ch(x,y,z) (z ^ (x & (y ^ z)))
60 #define Maj(x,y,z) (((x | y) & z) | (x & y))
61 #define S(x, n) RORc((x),(n))
62 #define R(x, n) (((x)&0xFFFFFFFFUL)>>(n))
63 #define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
64 #define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
65 #define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
66 #define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
67
68 /* compress 512-bits */
69 #ifdef LTC_CLEAN_STACK
70 static int _sha256_compress(hash_state * md, unsigned char *buf)
71 #else
72 static int sha256_compress(hash_state * md, unsigned char *buf)
73 #endif
74 {
75 ulong32 S[8], W[64], t0, t1;
76 #ifdef LTC_SMALL_CODE
77 ulong32 t;
78 #endif
79 int i;
80
81 /* copy state into S */
82 for (i = 0; i < 8; i++) {
83 S[i] = md->sha256.state[i];
84 }
85
86 /* copy the state into 512-bits into W[0..15] */
87 for (i = 0; i < 16; i++) {
88 LOAD32H(W[i], buf + (4*i));
89 }
90
91 /* fill W[16..63] */
92 for (i = 16; i < 64; i++) {
93 W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
94 }
95
96 /* Compress */
97 #ifdef LTC_SMALL_CODE
98 #define RND(a,b,c,d,e,f,g,h,i) \
99 t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
100 t1 = Sigma0(a) + Maj(a, b, c); \
101 d += t0; \
102 h = t0 + t1;
103
104 for (i = 0; i < 64; ++i) {
105 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i);
106 t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4];
107 S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t;
108 }
109 #else
110 #define RND(a,b,c,d,e,f,g,h,i,ki) \
111 t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i]; \
112 t1 = Sigma0(a) + Maj(a, b, c); \
113 d += t0; \
114 h = t0 + t1;
115
116 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,0x428a2f98);
117 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,0x71374491);
118 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,0xb5c0fbcf);
119 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,0xe9b5dba5);
120 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,0x3956c25b);
121 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,0x59f111f1);
122 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,0x923f82a4);
123 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,0xab1c5ed5);
124 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,0xd807aa98);
125 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,0x12835b01);
126 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,0x243185be);
127 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,0x550c7dc3);
128 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,0x72be5d74);
129 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,0x80deb1fe);
130 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,0x9bdc06a7);
131 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,0xc19bf174);
132 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,0xe49b69c1);
133 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,0xefbe4786);
134 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,0x0fc19dc6);
135 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,0x240ca1cc);
136 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,0x2de92c6f);
137 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,0x4a7484aa);
138 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,0x5cb0a9dc);
139 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,0x76f988da);
140 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,0x983e5152);
141 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,0xa831c66d);
142 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,0xb00327c8);
143 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,0xbf597fc7);
144 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,0xc6e00bf3);
145 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,0xd5a79147);
146 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,0x06ca6351);
147 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,0x14292967);
148 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,0x27b70a85);
149 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,0x2e1b2138);
150 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,0x4d2c6dfc);
151 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,0x53380d13);
152 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,0x650a7354);
153 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,0x766a0abb);
154 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,0x81c2c92e);
155 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,0x92722c85);
156 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,0xa2bfe8a1);
157 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,0xa81a664b);
158 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,0xc24b8b70);
159 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,0xc76c51a3);
160 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,0xd192e819);
161 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,0xd6990624);
162 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,0xf40e3585);
163 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,0x106aa070);
164 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,0x19a4c116);
165 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,0x1e376c08);
166 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,0x2748774c);
167 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,0x34b0bcb5);
168 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,0x391c0cb3);
169 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,0x4ed8aa4a);
170 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,0x5b9cca4f);
171 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,0x682e6ff3);
172 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,0x748f82ee);
173 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,0x78a5636f);
174 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,0x84c87814);
175 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,0x8cc70208);
176 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,0x90befffa);
177 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,0xa4506ceb);
178 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,0xbef9a3f7);
179 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,0xc67178f2);
180
181 #undef RND
182
183 #endif
184
185 /* feedback */
186 for (i = 0; i < 8; i++) {
187 md->sha256.state[i] = md->sha256.state[i] + S[i];
188 }
189 return CRYPT_OK;
190 }
191
192 #ifdef LTC_CLEAN_STACK
193 static int sha256_compress(hash_state * md, unsigned char *buf)
194 {
195 int err;
196 err = _sha256_compress(md, buf);
197 burn_stack(sizeof(ulong32) * 74);
198 return err;
199 }
200 #endif
201
202 /**
203 Initialize the hash state
204 @param md The hash state you wish to initialize
205 @return CRYPT_OK if successful
206 */
207 int sha256_init(hash_state * md)
208 {
209 LTC_ARGCHK(md != NULL);
210
211 md->sha256.curlen = 0;
212 md->sha256.length = 0;
213 md->sha256.state[0] = 0x6A09E667UL;
214 md->sha256.state[1] = 0xBB67AE85UL;
215 md->sha256.state[2] = 0x3C6EF372UL;
216 md->sha256.state[3] = 0xA54FF53AUL;
217 md->sha256.state[4] = 0x510E527FUL;
218 md->sha256.state[5] = 0x9B05688CUL;
219 md->sha256.state[6] = 0x1F83D9ABUL;
220 md->sha256.state[7] = 0x5BE0CD19UL;
221 return CRYPT_OK;
222 }
223
224 /**
225 Process a block of memory though the hash
226 @param md The hash state
227 @param in The data to hash
228 @param inlen The length of the data (octets)
229 @return CRYPT_OK if successful
230 */
231 HASH_PROCESS(sha256_process, sha256_compress, sha256, 64)
232
233 /**
234 Terminate the hash to get the digest
235 @param md The hash state
236 @param out [out] The destination of the hash (32 bytes)
237 @return CRYPT_OK if successful
238 */
239 int sha256_done(hash_state * md, unsigned char *out)
240 {
241 int i;
242
243 LTC_ARGCHK(md != NULL);
244 LTC_ARGCHK(out != NULL);
245
246 if (md->sha256.curlen >= sizeof(md->sha256.buf)) {
247 return CRYPT_INVALID_ARG;
248 }
249
250
251 /* increase the length of the message */
252 md->sha256.length += md->sha256.curlen * 8;
253
254 /* append the '1' bit */
255 md->sha256.buf[md->sha256.curlen++] = (unsigned char)0x80;
256
257 /* if the length is currently above 56 bytes we append zeros
258 * then compress. Then we can fall back to padding zeros and length
259 * encoding like normal.
260 */
261 if (md->sha256.curlen > 56) {
262 while (md->sha256.curlen < 64) {
263 md->sha256.buf[md->sha256.curlen++] = (unsigned char)0;
264 }
265 sha256_compress(md, md->sha256.buf);
266 md->sha256.curlen = 0;
267 }
268
269 /* pad upto 56 bytes of zeroes */
270 while (md->sha256.curlen < 56) {
271 md->sha256.buf[md->sha256.curlen++] = (unsigned char)0;
272 }
273
274 /* store length */
275 STORE64H(md->sha256.length, md->sha256.buf+56);
276 sha256_compress(md, md->sha256.buf);
277
278 /* copy output */
279 for (i = 0; i < 8; i++) {
280 STORE32H(md->sha256.state[i], out+(4*i));
281 }
282 #ifdef LTC_CLEAN_STACK
283 zeromem(md, sizeof(hash_state));
284 #endif
285 return CRYPT_OK;
286 }
287
288 /**
289 Self-test the hash
290 @return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
291 */
292 int sha256_test(void)
293 {
294 #ifndef LTC_TEST
295 return CRYPT_NOP;
296 #else
297 static const struct {
298 char *msg;
299 unsigned char hash[32];
300 } tests[] = {
301 { "abc",
302 { 0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea,
303 0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23,
304 0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c,
305 0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad }
306 },
307 { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
308 { 0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8,
309 0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39,
310 0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67,
311 0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1 }
312 },
313 };
314
315 int i;
316 unsigned char tmp[32];
317 hash_state md;
318
319 for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
320 sha256_init(&md);
321 sha256_process(&md, (unsigned char*)tests[i].msg, (unsigned long)strlen(tests[i].msg));
322 sha256_done(&md, tmp);
323 if (memcmp(tmp, tests[i].hash, 32) != 0) {
324 return CRYPT_FAIL_TESTVECTOR;
325 }
326 }
327 return CRYPT_OK;
328 #endif
329 }
330
331 #ifdef SHA224
332 #include "sha224.c"
333 #endif
334
335 #endif
336
337