Mercurial > dropbear
comparison src/pk/pkcs1/pkcs_1_pss_decode.c @ 191:1c15b283127b libtomcrypt-orig
Import of libtomcrypt 1.02 with manual path rename rearrangement etc
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Fri, 06 May 2005 13:23:02 +0000 |
parents | |
children | 39d5d58461d6 |
comparison
equal
deleted
inserted
replaced
143:5d99163f7e32 | 191:1c15b283127b |
---|---|
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis | |
2 * | |
3 * LibTomCrypt is a library that provides various cryptographic | |
4 * algorithms in a highly modular and flexible manner. | |
5 * | |
6 * The library is free for all purposes without any express | |
7 * guarantee it works. | |
8 * | |
9 * Tom St Denis, [email protected], http://libtomcrypt.org | |
10 */ | |
11 #include "tomcrypt.h" | |
12 | |
13 /** | |
14 @file pkcs_1_pss_decode.c | |
15 PKCS #1 PSS Signature Padding, Tom St Denis | |
16 */ | |
17 | |
18 #ifdef PKCS_1 | |
19 | |
20 /** | |
21 PKCS #1 v2.00 PSS decode | |
22 @param msghash The hash to verify | |
23 @param msghashlen The length of the hash (octets) | |
24 @param sig The signature data (encoded data) | |
25 @param siglen The length of the signature data (octets) | |
26 @param saltlen The length of the salt used (octets) | |
27 @param hash_idx The index of the hash desired | |
28 @param modulus_bitlen The bit length of the RSA modulus | |
29 @param res [out] The result of the comparison, 1==valid, 0==invalid | |
30 @return CRYPT_OK if successful (even if the comparison failed) | |
31 */ | |
32 int pkcs_1_pss_decode(const unsigned char *msghash, unsigned long msghashlen, | |
33 const unsigned char *sig, unsigned long siglen, | |
34 unsigned long saltlen, int hash_idx, | |
35 unsigned long modulus_bitlen, int *res) | |
36 { | |
37 unsigned char *DB, *mask, *salt, *hash; | |
38 unsigned long x, y, hLen, modulus_len; | |
39 int err; | |
40 hash_state md; | |
41 | |
42 LTC_ARGCHK(msghash != NULL); | |
43 LTC_ARGCHK(res != NULL); | |
44 | |
45 /* default to invalid */ | |
46 *res = 0; | |
47 | |
48 /* ensure hash is valid */ | |
49 if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) { | |
50 return err; | |
51 } | |
52 | |
53 hLen = hash_descriptor[hash_idx].hashsize; | |
54 modulus_len = (modulus_bitlen>>3) + (modulus_bitlen & 7 ? 1 : 0); | |
55 | |
56 /* check sizes */ | |
57 if ((saltlen > modulus_len) || | |
58 (modulus_len < hLen + saltlen + 2) || (siglen != modulus_len)) { | |
59 return CRYPT_PK_INVALID_SIZE; | |
60 } | |
61 | |
62 /* allocate ram for DB/mask/salt/hash of size modulus_len */ | |
63 DB = XMALLOC(modulus_len); | |
64 mask = XMALLOC(modulus_len); | |
65 salt = XMALLOC(modulus_len); | |
66 hash = XMALLOC(modulus_len); | |
67 if (DB == NULL || mask == NULL || salt == NULL || hash == NULL) { | |
68 if (DB != NULL) { | |
69 XFREE(DB); | |
70 } | |
71 if (mask != NULL) { | |
72 XFREE(mask); | |
73 } | |
74 if (salt != NULL) { | |
75 XFREE(salt); | |
76 } | |
77 if (hash != NULL) { | |
78 XFREE(hash); | |
79 } | |
80 return CRYPT_MEM; | |
81 } | |
82 | |
83 /* ensure the 0xBC byte */ | |
84 if (sig[siglen-1] != 0xBC) { | |
85 err = CRYPT_OK; | |
86 goto LBL_ERR; | |
87 } | |
88 | |
89 /* copy out the DB */ | |
90 for (x = 0; x < modulus_len - hLen - 1; x++) { | |
91 DB[x] = sig[x]; | |
92 } | |
93 | |
94 /* copy out the hash */ | |
95 for (y = 0; y < hLen; y++) { | |
96 hash[y] = sig[x++]; | |
97 } | |
98 | |
99 /* check the MSB */ | |
100 if ((sig[0] & ~(0xFF >> ((modulus_len<<3) - (modulus_bitlen-1)))) != 0) { | |
101 err = CRYPT_OK; | |
102 goto LBL_ERR; | |
103 } | |
104 | |
105 /* generate mask of length modulus_len - hLen - 1 from hash */ | |
106 if ((err = pkcs_1_mgf1(hash, hLen, hash_idx, mask, modulus_len - hLen - 1)) != CRYPT_OK) { | |
107 goto LBL_ERR; | |
108 } | |
109 | |
110 /* xor against DB */ | |
111 for (y = 0; y < (modulus_len - hLen - 1); y++) { | |
112 DB[y] ^= mask[y]; | |
113 } | |
114 | |
115 /* now clear the first byte [make sure smaller than modulus] */ | |
116 DB[0] &= 0xFF >> ((modulus_len<<3) - (modulus_bitlen-1)); | |
117 | |
118 /* DB = PS || 0x01 || salt, PS == modulus_len - saltlen - hLen - 2 zero bytes */ | |
119 | |
120 /* check for zeroes and 0x01 */ | |
121 for (x = 0; x < modulus_len - saltlen - hLen - 2; x++) { | |
122 if (DB[x] != 0x00) { | |
123 err = CRYPT_OK; | |
124 goto LBL_ERR; | |
125 } | |
126 } | |
127 | |
128 /* check for the 0x01 */ | |
129 if (DB[x++] != 0x01) { | |
130 err = CRYPT_OK; | |
131 goto LBL_ERR; | |
132 } | |
133 | |
134 /* M = (eight) 0x00 || msghash || salt, mask = H(M) */ | |
135 if ((err = hash_descriptor[hash_idx].init(&md)) != CRYPT_OK) { | |
136 goto LBL_ERR; | |
137 } | |
138 zeromem(mask, 8); | |
139 if ((err = hash_descriptor[hash_idx].process(&md, mask, 8)) != CRYPT_OK) { | |
140 goto LBL_ERR; | |
141 } | |
142 if ((err = hash_descriptor[hash_idx].process(&md, msghash, msghashlen)) != CRYPT_OK) { | |
143 goto LBL_ERR; | |
144 } | |
145 if ((err = hash_descriptor[hash_idx].process(&md, DB+x, saltlen)) != CRYPT_OK) { | |
146 goto LBL_ERR; | |
147 } | |
148 if ((err = hash_descriptor[hash_idx].done(&md, mask)) != CRYPT_OK) { | |
149 goto LBL_ERR; | |
150 } | |
151 | |
152 /* mask == hash means valid signature */ | |
153 if (memcmp(mask, hash, hLen) == 0) { | |
154 *res = 1; | |
155 } | |
156 | |
157 err = CRYPT_OK; | |
158 LBL_ERR: | |
159 #ifdef LTC_CLEAN_STACK | |
160 zeromem(DB, modulus_len); | |
161 zeromem(mask, modulus_len); | |
162 zeromem(salt, modulus_len); | |
163 zeromem(hash, modulus_len); | |
164 #endif | |
165 | |
166 XFREE(hash); | |
167 XFREE(salt); | |
168 XFREE(mask); | |
169 XFREE(DB); | |
170 | |
171 return err; | |
172 } | |
173 | |
174 #endif /* PKCS_1 */ |