Mercurial > dropbear
comparison bn_fast_mp_montgomery_reduce.c @ 1:22d5cf7d4b1a libtommath
Renaming branch
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 31 May 2004 18:23:46 +0000 |
parents | |
children | d29b64170cf0 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 1:22d5cf7d4b1a |
---|---|
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
2 * | |
3 * LibTomMath is a library that provides multiple-precision | |
4 * integer arithmetic as well as number theoretic functionality. | |
5 * | |
6 * The library was designed directly after the MPI library by | |
7 * Michael Fromberger but has been written from scratch with | |
8 * additional optimizations in place. | |
9 * | |
10 * The library is free for all purposes without any express | |
11 * guarantee it works. | |
12 * | |
13 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
14 */ | |
15 #include <tommath.h> | |
16 | |
17 /* computes xR**-1 == x (mod N) via Montgomery Reduction | |
18 * | |
19 * This is an optimized implementation of mp_montgomery_reduce | |
20 * which uses the comba method to quickly calculate the columns of the | |
21 * reduction. | |
22 * | |
23 * Based on Algorithm 14.32 on pp.601 of HAC. | |
24 */ | |
25 int | |
26 fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) | |
27 { | |
28 int ix, res, olduse; | |
29 mp_word W[MP_WARRAY]; | |
30 | |
31 /* get old used count */ | |
32 olduse = x->used; | |
33 | |
34 /* grow a as required */ | |
35 if (x->alloc < n->used + 1) { | |
36 if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) { | |
37 return res; | |
38 } | |
39 } | |
40 | |
41 /* first we have to get the digits of the input into | |
42 * an array of double precision words W[...] | |
43 */ | |
44 { | |
45 register mp_word *_W; | |
46 register mp_digit *tmpx; | |
47 | |
48 /* alias for the W[] array */ | |
49 _W = W; | |
50 | |
51 /* alias for the digits of x*/ | |
52 tmpx = x->dp; | |
53 | |
54 /* copy the digits of a into W[0..a->used-1] */ | |
55 for (ix = 0; ix < x->used; ix++) { | |
56 *_W++ = *tmpx++; | |
57 } | |
58 | |
59 /* zero the high words of W[a->used..m->used*2] */ | |
60 for (; ix < n->used * 2 + 1; ix++) { | |
61 *_W++ = 0; | |
62 } | |
63 } | |
64 | |
65 /* now we proceed to zero successive digits | |
66 * from the least significant upwards | |
67 */ | |
68 for (ix = 0; ix < n->used; ix++) { | |
69 /* mu = ai * m' mod b | |
70 * | |
71 * We avoid a double precision multiplication (which isn't required) | |
72 * by casting the value down to a mp_digit. Note this requires | |
73 * that W[ix-1] have the carry cleared (see after the inner loop) | |
74 */ | |
75 register mp_digit mu; | |
76 mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK); | |
77 | |
78 /* a = a + mu * m * b**i | |
79 * | |
80 * This is computed in place and on the fly. The multiplication | |
81 * by b**i is handled by offseting which columns the results | |
82 * are added to. | |
83 * | |
84 * Note the comba method normally doesn't handle carries in the | |
85 * inner loop In this case we fix the carry from the previous | |
86 * column since the Montgomery reduction requires digits of the | |
87 * result (so far) [see above] to work. This is | |
88 * handled by fixing up one carry after the inner loop. The | |
89 * carry fixups are done in order so after these loops the | |
90 * first m->used words of W[] have the carries fixed | |
91 */ | |
92 { | |
93 register int iy; | |
94 register mp_digit *tmpn; | |
95 register mp_word *_W; | |
96 | |
97 /* alias for the digits of the modulus */ | |
98 tmpn = n->dp; | |
99 | |
100 /* Alias for the columns set by an offset of ix */ | |
101 _W = W + ix; | |
102 | |
103 /* inner loop */ | |
104 for (iy = 0; iy < n->used; iy++) { | |
105 *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++); | |
106 } | |
107 } | |
108 | |
109 /* now fix carry for next digit, W[ix+1] */ | |
110 W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT); | |
111 } | |
112 | |
113 /* now we have to propagate the carries and | |
114 * shift the words downward [all those least | |
115 * significant digits we zeroed]. | |
116 */ | |
117 { | |
118 register mp_digit *tmpx; | |
119 register mp_word *_W, *_W1; | |
120 | |
121 /* nox fix rest of carries */ | |
122 | |
123 /* alias for current word */ | |
124 _W1 = W + ix; | |
125 | |
126 /* alias for next word, where the carry goes */ | |
127 _W = W + ++ix; | |
128 | |
129 for (; ix <= n->used * 2 + 1; ix++) { | |
130 *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT); | |
131 } | |
132 | |
133 /* copy out, A = A/b**n | |
134 * | |
135 * The result is A/b**n but instead of converting from an | |
136 * array of mp_word to mp_digit than calling mp_rshd | |
137 * we just copy them in the right order | |
138 */ | |
139 | |
140 /* alias for destination word */ | |
141 tmpx = x->dp; | |
142 | |
143 /* alias for shifted double precision result */ | |
144 _W = W + n->used; | |
145 | |
146 for (ix = 0; ix < n->used + 1; ix++) { | |
147 *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK)); | |
148 } | |
149 | |
150 /* zero oldused digits, if the input a was larger than | |
151 * m->used+1 we'll have to clear the digits | |
152 */ | |
153 for (; ix < olduse; ix++) { | |
154 *tmpx++ = 0; | |
155 } | |
156 } | |
157 | |
158 /* set the max used and clamp */ | |
159 x->used = n->used + 1; | |
160 mp_clamp (x); | |
161 | |
162 /* if A >= m then A = A - m */ | |
163 if (mp_cmp_mag (x, n) != MP_LT) { | |
164 return s_mp_sub (x, n, x); | |
165 } | |
166 return MP_OKAY; | |
167 } |