Mercurial > dropbear
comparison bn_mp_exptmod.c @ 1:22d5cf7d4b1a libtommath
Renaming branch
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 31 May 2004 18:23:46 +0000 |
parents | |
children | a96ff234ff19 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 1:22d5cf7d4b1a |
---|---|
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
2 * | |
3 * LibTomMath is a library that provides multiple-precision | |
4 * integer arithmetic as well as number theoretic functionality. | |
5 * | |
6 * The library was designed directly after the MPI library by | |
7 * Michael Fromberger but has been written from scratch with | |
8 * additional optimizations in place. | |
9 * | |
10 * The library is free for all purposes without any express | |
11 * guarantee it works. | |
12 * | |
13 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
14 */ | |
15 #include <tommath.h> | |
16 | |
17 | |
18 /* this is a shell function that calls either the normal or Montgomery | |
19 * exptmod functions. Originally the call to the montgomery code was | |
20 * embedded in the normal function but that wasted alot of stack space | |
21 * for nothing (since 99% of the time the Montgomery code would be called) | |
22 */ | |
23 int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | |
24 { | |
25 int dr; | |
26 | |
27 /* modulus P must be positive */ | |
28 if (P->sign == MP_NEG) { | |
29 return MP_VAL; | |
30 } | |
31 | |
32 /* if exponent X is negative we have to recurse */ | |
33 if (X->sign == MP_NEG) { | |
34 mp_int tmpG, tmpX; | |
35 int err; | |
36 | |
37 /* first compute 1/G mod P */ | |
38 if ((err = mp_init(&tmpG)) != MP_OKAY) { | |
39 return err; | |
40 } | |
41 if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { | |
42 mp_clear(&tmpG); | |
43 return err; | |
44 } | |
45 | |
46 /* now get |X| */ | |
47 if ((err = mp_init(&tmpX)) != MP_OKAY) { | |
48 mp_clear(&tmpG); | |
49 return err; | |
50 } | |
51 if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { | |
52 mp_clear_multi(&tmpG, &tmpX, NULL); | |
53 return err; | |
54 } | |
55 | |
56 /* and now compute (1/G)**|X| instead of G**X [X < 0] */ | |
57 err = mp_exptmod(&tmpG, &tmpX, P, Y); | |
58 mp_clear_multi(&tmpG, &tmpX, NULL); | |
59 return err; | |
60 } | |
61 | |
62 /* is it a DR modulus? */ | |
63 dr = mp_dr_is_modulus(P); | |
64 | |
65 /* if not, is it a uDR modulus? */ | |
66 if (dr == 0) { | |
67 dr = mp_reduce_is_2k(P) << 1; | |
68 } | |
69 | |
70 /* if the modulus is odd or dr != 0 use the fast method */ | |
71 #ifndef NO_FAST_EXPTMOD | |
72 if (mp_isodd (P) == 1 || dr != 0) { | |
73 return mp_exptmod_fast (G, X, P, Y, dr); | |
74 } | |
75 else | |
76 #endif | |
77 { | |
78 /* otherwise use the generic Barrett reduction technique */ | |
79 return s_mp_exptmod (G, X, P, Y); | |
80 } | |
81 } | |
82 |