Mercurial > dropbear
comparison bn_mp_invmod.c @ 1:22d5cf7d4b1a libtommath
Renaming branch
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 31 May 2004 18:23:46 +0000 |
parents | |
children | d29b64170cf0 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 1:22d5cf7d4b1a |
---|---|
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
2 * | |
3 * LibTomMath is a library that provides multiple-precision | |
4 * integer arithmetic as well as number theoretic functionality. | |
5 * | |
6 * The library was designed directly after the MPI library by | |
7 * Michael Fromberger but has been written from scratch with | |
8 * additional optimizations in place. | |
9 * | |
10 * The library is free for all purposes without any express | |
11 * guarantee it works. | |
12 * | |
13 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
14 */ | |
15 #include <tommath.h> | |
16 | |
17 /* hac 14.61, pp608 */ | |
18 int mp_invmod (mp_int * a, mp_int * b, mp_int * c) | |
19 { | |
20 mp_int x, y, u, v, A, B, C, D; | |
21 int res; | |
22 | |
23 /* b cannot be negative */ | |
24 if (b->sign == MP_NEG || mp_iszero(b) == 1) { | |
25 return MP_VAL; | |
26 } | |
27 | |
28 /* if the modulus is odd we can use a faster routine instead */ | |
29 if (mp_isodd (b) == 1) { | |
30 return fast_mp_invmod (a, b, c); | |
31 } | |
32 | |
33 /* init temps */ | |
34 if ((res = mp_init_multi(&x, &y, &u, &v, | |
35 &A, &B, &C, &D, NULL)) != MP_OKAY) { | |
36 return res; | |
37 } | |
38 | |
39 /* x = a, y = b */ | |
40 if ((res = mp_copy (a, &x)) != MP_OKAY) { | |
41 goto __ERR; | |
42 } | |
43 if ((res = mp_copy (b, &y)) != MP_OKAY) { | |
44 goto __ERR; | |
45 } | |
46 | |
47 /* 2. [modified] if x,y are both even then return an error! */ | |
48 if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) { | |
49 res = MP_VAL; | |
50 goto __ERR; | |
51 } | |
52 | |
53 /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ | |
54 if ((res = mp_copy (&x, &u)) != MP_OKAY) { | |
55 goto __ERR; | |
56 } | |
57 if ((res = mp_copy (&y, &v)) != MP_OKAY) { | |
58 goto __ERR; | |
59 } | |
60 mp_set (&A, 1); | |
61 mp_set (&D, 1); | |
62 | |
63 top: | |
64 /* 4. while u is even do */ | |
65 while (mp_iseven (&u) == 1) { | |
66 /* 4.1 u = u/2 */ | |
67 if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { | |
68 goto __ERR; | |
69 } | |
70 /* 4.2 if A or B is odd then */ | |
71 if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) { | |
72 /* A = (A+y)/2, B = (B-x)/2 */ | |
73 if ((res = mp_add (&A, &y, &A)) != MP_OKAY) { | |
74 goto __ERR; | |
75 } | |
76 if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { | |
77 goto __ERR; | |
78 } | |
79 } | |
80 /* A = A/2, B = B/2 */ | |
81 if ((res = mp_div_2 (&A, &A)) != MP_OKAY) { | |
82 goto __ERR; | |
83 } | |
84 if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { | |
85 goto __ERR; | |
86 } | |
87 } | |
88 | |
89 /* 5. while v is even do */ | |
90 while (mp_iseven (&v) == 1) { | |
91 /* 5.1 v = v/2 */ | |
92 if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { | |
93 goto __ERR; | |
94 } | |
95 /* 5.2 if C or D is odd then */ | |
96 if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) { | |
97 /* C = (C+y)/2, D = (D-x)/2 */ | |
98 if ((res = mp_add (&C, &y, &C)) != MP_OKAY) { | |
99 goto __ERR; | |
100 } | |
101 if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { | |
102 goto __ERR; | |
103 } | |
104 } | |
105 /* C = C/2, D = D/2 */ | |
106 if ((res = mp_div_2 (&C, &C)) != MP_OKAY) { | |
107 goto __ERR; | |
108 } | |
109 if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { | |
110 goto __ERR; | |
111 } | |
112 } | |
113 | |
114 /* 6. if u >= v then */ | |
115 if (mp_cmp (&u, &v) != MP_LT) { | |
116 /* u = u - v, A = A - C, B = B - D */ | |
117 if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { | |
118 goto __ERR; | |
119 } | |
120 | |
121 if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) { | |
122 goto __ERR; | |
123 } | |
124 | |
125 if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { | |
126 goto __ERR; | |
127 } | |
128 } else { | |
129 /* v - v - u, C = C - A, D = D - B */ | |
130 if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { | |
131 goto __ERR; | |
132 } | |
133 | |
134 if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) { | |
135 goto __ERR; | |
136 } | |
137 | |
138 if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { | |
139 goto __ERR; | |
140 } | |
141 } | |
142 | |
143 /* if not zero goto step 4 */ | |
144 if (mp_iszero (&u) == 0) | |
145 goto top; | |
146 | |
147 /* now a = C, b = D, gcd == g*v */ | |
148 | |
149 /* if v != 1 then there is no inverse */ | |
150 if (mp_cmp_d (&v, 1) != MP_EQ) { | |
151 res = MP_VAL; | |
152 goto __ERR; | |
153 } | |
154 | |
155 /* if its too low */ | |
156 while (mp_cmp_d(&C, 0) == MP_LT) { | |
157 if ((res = mp_add(&C, b, &C)) != MP_OKAY) { | |
158 goto __ERR; | |
159 } | |
160 } | |
161 | |
162 /* too big */ | |
163 while (mp_cmp_mag(&C, b) != MP_LT) { | |
164 if ((res = mp_sub(&C, b, &C)) != MP_OKAY) { | |
165 goto __ERR; | |
166 } | |
167 } | |
168 | |
169 /* C is now the inverse */ | |
170 mp_exch (&C, c); | |
171 res = MP_OKAY; | |
172 __ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL); | |
173 return res; | |
174 } |