Mercurial > dropbear
comparison bn_mp_jacobi.c @ 1:22d5cf7d4b1a libtommath
Renaming branch
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 31 May 2004 18:23:46 +0000 |
parents | |
children | d29b64170cf0 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 1:22d5cf7d4b1a |
---|---|
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
2 * | |
3 * LibTomMath is a library that provides multiple-precision | |
4 * integer arithmetic as well as number theoretic functionality. | |
5 * | |
6 * The library was designed directly after the MPI library by | |
7 * Michael Fromberger but has been written from scratch with | |
8 * additional optimizations in place. | |
9 * | |
10 * The library is free for all purposes without any express | |
11 * guarantee it works. | |
12 * | |
13 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
14 */ | |
15 #include <tommath.h> | |
16 | |
17 /* computes the jacobi c = (a | n) (or Legendre if n is prime) | |
18 * HAC pp. 73 Algorithm 2.149 | |
19 */ | |
20 int mp_jacobi (mp_int * a, mp_int * p, int *c) | |
21 { | |
22 mp_int a1, p1; | |
23 int k, s, r, res; | |
24 mp_digit residue; | |
25 | |
26 /* if p <= 0 return MP_VAL */ | |
27 if (mp_cmp_d(p, 0) != MP_GT) { | |
28 return MP_VAL; | |
29 } | |
30 | |
31 /* step 1. if a == 0, return 0 */ | |
32 if (mp_iszero (a) == 1) { | |
33 *c = 0; | |
34 return MP_OKAY; | |
35 } | |
36 | |
37 /* step 2. if a == 1, return 1 */ | |
38 if (mp_cmp_d (a, 1) == MP_EQ) { | |
39 *c = 1; | |
40 return MP_OKAY; | |
41 } | |
42 | |
43 /* default */ | |
44 s = 0; | |
45 | |
46 /* step 3. write a = a1 * 2**k */ | |
47 if ((res = mp_init_copy (&a1, a)) != MP_OKAY) { | |
48 return res; | |
49 } | |
50 | |
51 if ((res = mp_init (&p1)) != MP_OKAY) { | |
52 goto __A1; | |
53 } | |
54 | |
55 /* divide out larger power of two */ | |
56 k = mp_cnt_lsb(&a1); | |
57 if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) { | |
58 goto __P1; | |
59 } | |
60 | |
61 /* step 4. if e is even set s=1 */ | |
62 if ((k & 1) == 0) { | |
63 s = 1; | |
64 } else { | |
65 /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */ | |
66 residue = p->dp[0] & 7; | |
67 | |
68 if (residue == 1 || residue == 7) { | |
69 s = 1; | |
70 } else if (residue == 3 || residue == 5) { | |
71 s = -1; | |
72 } | |
73 } | |
74 | |
75 /* step 5. if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */ | |
76 if ( ((p->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) { | |
77 s = -s; | |
78 } | |
79 | |
80 /* if a1 == 1 we're done */ | |
81 if (mp_cmp_d (&a1, 1) == MP_EQ) { | |
82 *c = s; | |
83 } else { | |
84 /* n1 = n mod a1 */ | |
85 if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) { | |
86 goto __P1; | |
87 } | |
88 if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) { | |
89 goto __P1; | |
90 } | |
91 *c = s * r; | |
92 } | |
93 | |
94 /* done */ | |
95 res = MP_OKAY; | |
96 __P1:mp_clear (&p1); | |
97 __A1:mp_clear (&a1); | |
98 return res; | |
99 } |