Mercurial > dropbear
comparison bn_mp_karatsuba_mul.c @ 1:22d5cf7d4b1a libtommath
Renaming branch
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 31 May 2004 18:23:46 +0000 |
parents | |
children | d29b64170cf0 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 1:22d5cf7d4b1a |
---|---|
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
2 * | |
3 * LibTomMath is a library that provides multiple-precision | |
4 * integer arithmetic as well as number theoretic functionality. | |
5 * | |
6 * The library was designed directly after the MPI library by | |
7 * Michael Fromberger but has been written from scratch with | |
8 * additional optimizations in place. | |
9 * | |
10 * The library is free for all purposes without any express | |
11 * guarantee it works. | |
12 * | |
13 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
14 */ | |
15 #include <tommath.h> | |
16 | |
17 /* c = |a| * |b| using Karatsuba Multiplication using | |
18 * three half size multiplications | |
19 * | |
20 * Let B represent the radix [e.g. 2**DIGIT_BIT] and | |
21 * let n represent half of the number of digits in | |
22 * the min(a,b) | |
23 * | |
24 * a = a1 * B**n + a0 | |
25 * b = b1 * B**n + b0 | |
26 * | |
27 * Then, a * b => | |
28 a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0 | |
29 * | |
30 * Note that a1b1 and a0b0 are used twice and only need to be | |
31 * computed once. So in total three half size (half # of | |
32 * digit) multiplications are performed, a0b0, a1b1 and | |
33 * (a1-b1)(a0-b0) | |
34 * | |
35 * Note that a multiplication of half the digits requires | |
36 * 1/4th the number of single precision multiplications so in | |
37 * total after one call 25% of the single precision multiplications | |
38 * are saved. Note also that the call to mp_mul can end up back | |
39 * in this function if the a0, a1, b0, or b1 are above the threshold. | |
40 * This is known as divide-and-conquer and leads to the famous | |
41 * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than | |
42 * the standard O(N**2) that the baseline/comba methods use. | |
43 * Generally though the overhead of this method doesn't pay off | |
44 * until a certain size (N ~ 80) is reached. | |
45 */ | |
46 int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c) | |
47 { | |
48 mp_int x0, x1, y0, y1, t1, x0y0, x1y1; | |
49 int B, err; | |
50 | |
51 /* default the return code to an error */ | |
52 err = MP_MEM; | |
53 | |
54 /* min # of digits */ | |
55 B = MIN (a->used, b->used); | |
56 | |
57 /* now divide in two */ | |
58 B = B >> 1; | |
59 | |
60 /* init copy all the temps */ | |
61 if (mp_init_size (&x0, B) != MP_OKAY) | |
62 goto ERR; | |
63 if (mp_init_size (&x1, a->used - B) != MP_OKAY) | |
64 goto X0; | |
65 if (mp_init_size (&y0, B) != MP_OKAY) | |
66 goto X1; | |
67 if (mp_init_size (&y1, b->used - B) != MP_OKAY) | |
68 goto Y0; | |
69 | |
70 /* init temps */ | |
71 if (mp_init_size (&t1, B * 2) != MP_OKAY) | |
72 goto Y1; | |
73 if (mp_init_size (&x0y0, B * 2) != MP_OKAY) | |
74 goto T1; | |
75 if (mp_init_size (&x1y1, B * 2) != MP_OKAY) | |
76 goto X0Y0; | |
77 | |
78 /* now shift the digits */ | |
79 x0.sign = x1.sign = a->sign; | |
80 y0.sign = y1.sign = b->sign; | |
81 | |
82 x0.used = y0.used = B; | |
83 x1.used = a->used - B; | |
84 y1.used = b->used - B; | |
85 | |
86 { | |
87 register int x; | |
88 register mp_digit *tmpa, *tmpb, *tmpx, *tmpy; | |
89 | |
90 /* we copy the digits directly instead of using higher level functions | |
91 * since we also need to shift the digits | |
92 */ | |
93 tmpa = a->dp; | |
94 tmpb = b->dp; | |
95 | |
96 tmpx = x0.dp; | |
97 tmpy = y0.dp; | |
98 for (x = 0; x < B; x++) { | |
99 *tmpx++ = *tmpa++; | |
100 *tmpy++ = *tmpb++; | |
101 } | |
102 | |
103 tmpx = x1.dp; | |
104 for (x = B; x < a->used; x++) { | |
105 *tmpx++ = *tmpa++; | |
106 } | |
107 | |
108 tmpy = y1.dp; | |
109 for (x = B; x < b->used; x++) { | |
110 *tmpy++ = *tmpb++; | |
111 } | |
112 } | |
113 | |
114 /* only need to clamp the lower words since by definition the | |
115 * upper words x1/y1 must have a known number of digits | |
116 */ | |
117 mp_clamp (&x0); | |
118 mp_clamp (&y0); | |
119 | |
120 /* now calc the products x0y0 and x1y1 */ | |
121 /* after this x0 is no longer required, free temp [x0==t2]! */ | |
122 if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY) | |
123 goto X1Y1; /* x0y0 = x0*y0 */ | |
124 if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY) | |
125 goto X1Y1; /* x1y1 = x1*y1 */ | |
126 | |
127 /* now calc x1-x0 and y1-y0 */ | |
128 if (mp_sub (&x1, &x0, &t1) != MP_OKAY) | |
129 goto X1Y1; /* t1 = x1 - x0 */ | |
130 if (mp_sub (&y1, &y0, &x0) != MP_OKAY) | |
131 goto X1Y1; /* t2 = y1 - y0 */ | |
132 if (mp_mul (&t1, &x0, &t1) != MP_OKAY) | |
133 goto X1Y1; /* t1 = (x1 - x0) * (y1 - y0) */ | |
134 | |
135 /* add x0y0 */ | |
136 if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY) | |
137 goto X1Y1; /* t2 = x0y0 + x1y1 */ | |
138 if (mp_sub (&x0, &t1, &t1) != MP_OKAY) | |
139 goto X1Y1; /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */ | |
140 | |
141 /* shift by B */ | |
142 if (mp_lshd (&t1, B) != MP_OKAY) | |
143 goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */ | |
144 if (mp_lshd (&x1y1, B * 2) != MP_OKAY) | |
145 goto X1Y1; /* x1y1 = x1y1 << 2*B */ | |
146 | |
147 if (mp_add (&x0y0, &t1, &t1) != MP_OKAY) | |
148 goto X1Y1; /* t1 = x0y0 + t1 */ | |
149 if (mp_add (&t1, &x1y1, c) != MP_OKAY) | |
150 goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */ | |
151 | |
152 /* Algorithm succeeded set the return code to MP_OKAY */ | |
153 err = MP_OKAY; | |
154 | |
155 X1Y1:mp_clear (&x1y1); | |
156 X0Y0:mp_clear (&x0y0); | |
157 T1:mp_clear (&t1); | |
158 Y1:mp_clear (&y1); | |
159 Y0:mp_clear (&y0); | |
160 X1:mp_clear (&x1); | |
161 X0:mp_clear (&x0); | |
162 ERR: | |
163 return err; | |
164 } |