Mercurial > dropbear
comparison bn_mp_toom_sqr.c @ 1:22d5cf7d4b1a libtommath
Renaming branch
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 31 May 2004 18:23:46 +0000 |
parents | |
children | d29b64170cf0 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 1:22d5cf7d4b1a |
---|---|
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
2 * | |
3 * LibTomMath is a library that provides multiple-precision | |
4 * integer arithmetic as well as number theoretic functionality. | |
5 * | |
6 * The library was designed directly after the MPI library by | |
7 * Michael Fromberger but has been written from scratch with | |
8 * additional optimizations in place. | |
9 * | |
10 * The library is free for all purposes without any express | |
11 * guarantee it works. | |
12 * | |
13 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
14 */ | |
15 #include <tommath.h> | |
16 | |
17 /* squaring using Toom-Cook 3-way algorithm */ | |
18 int | |
19 mp_toom_sqr(mp_int *a, mp_int *b) | |
20 { | |
21 mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2; | |
22 int res, B; | |
23 | |
24 /* init temps */ | |
25 if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL)) != MP_OKAY) { | |
26 return res; | |
27 } | |
28 | |
29 /* B */ | |
30 B = a->used / 3; | |
31 | |
32 /* a = a2 * B**2 + a1 * B + a0 */ | |
33 if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) { | |
34 goto ERR; | |
35 } | |
36 | |
37 if ((res = mp_copy(a, &a1)) != MP_OKAY) { | |
38 goto ERR; | |
39 } | |
40 mp_rshd(&a1, B); | |
41 mp_mod_2d(&a1, DIGIT_BIT * B, &a1); | |
42 | |
43 if ((res = mp_copy(a, &a2)) != MP_OKAY) { | |
44 goto ERR; | |
45 } | |
46 mp_rshd(&a2, B*2); | |
47 | |
48 /* w0 = a0*a0 */ | |
49 if ((res = mp_sqr(&a0, &w0)) != MP_OKAY) { | |
50 goto ERR; | |
51 } | |
52 | |
53 /* w4 = a2 * a2 */ | |
54 if ((res = mp_sqr(&a2, &w4)) != MP_OKAY) { | |
55 goto ERR; | |
56 } | |
57 | |
58 /* w1 = (a2 + 2(a1 + 2a0))**2 */ | |
59 if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) { | |
60 goto ERR; | |
61 } | |
62 if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { | |
63 goto ERR; | |
64 } | |
65 if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { | |
66 goto ERR; | |
67 } | |
68 if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) { | |
69 goto ERR; | |
70 } | |
71 | |
72 if ((res = mp_sqr(&tmp1, &w1)) != MP_OKAY) { | |
73 goto ERR; | |
74 } | |
75 | |
76 /* w3 = (a0 + 2(a1 + 2a2))**2 */ | |
77 if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) { | |
78 goto ERR; | |
79 } | |
80 if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { | |
81 goto ERR; | |
82 } | |
83 if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { | |
84 goto ERR; | |
85 } | |
86 if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { | |
87 goto ERR; | |
88 } | |
89 | |
90 if ((res = mp_sqr(&tmp1, &w3)) != MP_OKAY) { | |
91 goto ERR; | |
92 } | |
93 | |
94 | |
95 /* w2 = (a2 + a1 + a0)**2 */ | |
96 if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) { | |
97 goto ERR; | |
98 } | |
99 if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { | |
100 goto ERR; | |
101 } | |
102 if ((res = mp_sqr(&tmp1, &w2)) != MP_OKAY) { | |
103 goto ERR; | |
104 } | |
105 | |
106 /* now solve the matrix | |
107 | |
108 0 0 0 0 1 | |
109 1 2 4 8 16 | |
110 1 1 1 1 1 | |
111 16 8 4 2 1 | |
112 1 0 0 0 0 | |
113 | |
114 using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication. | |
115 */ | |
116 | |
117 /* r1 - r4 */ | |
118 if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) { | |
119 goto ERR; | |
120 } | |
121 /* r3 - r0 */ | |
122 if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) { | |
123 goto ERR; | |
124 } | |
125 /* r1/2 */ | |
126 if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) { | |
127 goto ERR; | |
128 } | |
129 /* r3/2 */ | |
130 if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) { | |
131 goto ERR; | |
132 } | |
133 /* r2 - r0 - r4 */ | |
134 if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) { | |
135 goto ERR; | |
136 } | |
137 if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) { | |
138 goto ERR; | |
139 } | |
140 /* r1 - r2 */ | |
141 if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { | |
142 goto ERR; | |
143 } | |
144 /* r3 - r2 */ | |
145 if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { | |
146 goto ERR; | |
147 } | |
148 /* r1 - 8r0 */ | |
149 if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) { | |
150 goto ERR; | |
151 } | |
152 if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) { | |
153 goto ERR; | |
154 } | |
155 /* r3 - 8r4 */ | |
156 if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) { | |
157 goto ERR; | |
158 } | |
159 if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) { | |
160 goto ERR; | |
161 } | |
162 /* 3r2 - r1 - r3 */ | |
163 if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) { | |
164 goto ERR; | |
165 } | |
166 if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) { | |
167 goto ERR; | |
168 } | |
169 if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) { | |
170 goto ERR; | |
171 } | |
172 /* r1 - r2 */ | |
173 if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { | |
174 goto ERR; | |
175 } | |
176 /* r3 - r2 */ | |
177 if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { | |
178 goto ERR; | |
179 } | |
180 /* r1/3 */ | |
181 if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) { | |
182 goto ERR; | |
183 } | |
184 /* r3/3 */ | |
185 if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) { | |
186 goto ERR; | |
187 } | |
188 | |
189 /* at this point shift W[n] by B*n */ | |
190 if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) { | |
191 goto ERR; | |
192 } | |
193 if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) { | |
194 goto ERR; | |
195 } | |
196 if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) { | |
197 goto ERR; | |
198 } | |
199 if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) { | |
200 goto ERR; | |
201 } | |
202 | |
203 if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) { | |
204 goto ERR; | |
205 } | |
206 if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) { | |
207 goto ERR; | |
208 } | |
209 if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) { | |
210 goto ERR; | |
211 } | |
212 if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) { | |
213 goto ERR; | |
214 } | |
215 | |
216 ERR: | |
217 mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL); | |
218 return res; | |
219 } | |
220 |