Mercurial > dropbear
comparison libtommath/bn_mp_prime_miller_rabin.c @ 330:5488db2e9e4e
merge of 332f709a4cb39cde4cedab7c3be89e05f3023067
and ca4ca78b82c5d430c69ce01bf794e8886ce81431
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Sat, 10 Jun 2006 16:39:40 +0000 |
parents | eed26cff980b |
children | 5ff8218bcee9 |
comparison
equal
deleted
inserted
replaced
329:8ed0dce45126 | 330:5488db2e9e4e |
---|---|
1 #include <tommath.h> | |
2 #ifdef BN_MP_PRIME_MILLER_RABIN_C | |
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
4 * | |
5 * LibTomMath is a library that provides multiple-precision | |
6 * integer arithmetic as well as number theoretic functionality. | |
7 * | |
8 * The library was designed directly after the MPI library by | |
9 * Michael Fromberger but has been written from scratch with | |
10 * additional optimizations in place. | |
11 * | |
12 * The library is free for all purposes without any express | |
13 * guarantee it works. | |
14 * | |
15 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
16 */ | |
17 | |
18 /* Miller-Rabin test of "a" to the base of "b" as described in | |
19 * HAC pp. 139 Algorithm 4.24 | |
20 * | |
21 * Sets result to 0 if definitely composite or 1 if probably prime. | |
22 * Randomly the chance of error is no more than 1/4 and often | |
23 * very much lower. | |
24 */ | |
25 int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result) | |
26 { | |
27 mp_int n1, y, r; | |
28 int s, j, err; | |
29 | |
30 /* default */ | |
31 *result = MP_NO; | |
32 | |
33 /* ensure b > 1 */ | |
34 if (mp_cmp_d(b, 1) != MP_GT) { | |
35 return MP_VAL; | |
36 } | |
37 | |
38 /* get n1 = a - 1 */ | |
39 if ((err = mp_init_copy (&n1, a)) != MP_OKAY) { | |
40 return err; | |
41 } | |
42 if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) { | |
43 goto LBL_N1; | |
44 } | |
45 | |
46 /* set 2**s * r = n1 */ | |
47 if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) { | |
48 goto LBL_N1; | |
49 } | |
50 | |
51 /* count the number of least significant bits | |
52 * which are zero | |
53 */ | |
54 s = mp_cnt_lsb(&r); | |
55 | |
56 /* now divide n - 1 by 2**s */ | |
57 if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) { | |
58 goto LBL_R; | |
59 } | |
60 | |
61 /* compute y = b**r mod a */ | |
62 if ((err = mp_init (&y)) != MP_OKAY) { | |
63 goto LBL_R; | |
64 } | |
65 if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) { | |
66 goto LBL_Y; | |
67 } | |
68 | |
69 /* if y != 1 and y != n1 do */ | |
70 if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) { | |
71 j = 1; | |
72 /* while j <= s-1 and y != n1 */ | |
73 while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) { | |
74 if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) { | |
75 goto LBL_Y; | |
76 } | |
77 | |
78 /* if y == 1 then composite */ | |
79 if (mp_cmp_d (&y, 1) == MP_EQ) { | |
80 goto LBL_Y; | |
81 } | |
82 | |
83 ++j; | |
84 } | |
85 | |
86 /* if y != n1 then composite */ | |
87 if (mp_cmp (&y, &n1) != MP_EQ) { | |
88 goto LBL_Y; | |
89 } | |
90 } | |
91 | |
92 /* probably prime now */ | |
93 *result = MP_YES; | |
94 LBL_Y:mp_clear (&y); | |
95 LBL_R:mp_clear (&r); | |
96 LBL_N1:mp_clear (&n1); | |
97 return err; | |
98 } | |
99 #endif |