Mercurial > dropbear
comparison src/ciphers/twofish/twofish.c @ 280:59400faa4b44 libtomcrypt-orig libtomcrypt-1.05
Re-import libtomcrypt 1.05 for cleaner propagating.
From crypt-1.05.tar.bz2, SHA1 of 88250202bb51570dc64f7e8f1c943cda9479258f
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Wed, 08 Mar 2006 12:58:00 +0000 |
parents | |
children | 997e6f7dc01e d5faf4814ddb |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 280:59400faa4b44 |
---|---|
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis | |
2 * | |
3 * LibTomCrypt is a library that provides various cryptographic | |
4 * algorithms in a highly modular and flexible manner. | |
5 * | |
6 * The library is free for all purposes without any express | |
7 * guarantee it works. | |
8 * | |
9 * Tom St Denis, [email protected], http://libtomcrypt.org | |
10 */ | |
11 | |
12 /** | |
13 @file twofish.c | |
14 Implementation of Twofish by Tom St Denis | |
15 */ | |
16 #include "tomcrypt.h" | |
17 | |
18 #ifdef TWOFISH | |
19 | |
20 /* first TWOFISH_ALL_TABLES must ensure TWOFISH_TABLES is defined */ | |
21 #ifdef TWOFISH_ALL_TABLES | |
22 #ifndef TWOFISH_TABLES | |
23 #define TWOFISH_TABLES | |
24 #endif | |
25 #endif | |
26 | |
27 const struct ltc_cipher_descriptor twofish_desc = | |
28 { | |
29 "twofish", | |
30 7, | |
31 16, 32, 16, 16, | |
32 &twofish_setup, | |
33 &twofish_ecb_encrypt, | |
34 &twofish_ecb_decrypt, | |
35 &twofish_test, | |
36 &twofish_done, | |
37 &twofish_keysize, | |
38 NULL, NULL, NULL, NULL, NULL, NULL, NULL | |
39 }; | |
40 | |
41 /* the two polynomials */ | |
42 #define MDS_POLY 0x169 | |
43 #define RS_POLY 0x14D | |
44 | |
45 /* The 4x4 MDS Linear Transform */ | |
46 static const unsigned char MDS[4][4] = { | |
47 { 0x01, 0xEF, 0x5B, 0x5B }, | |
48 { 0x5B, 0xEF, 0xEF, 0x01 }, | |
49 { 0xEF, 0x5B, 0x01, 0xEF }, | |
50 { 0xEF, 0x01, 0xEF, 0x5B } | |
51 }; | |
52 | |
53 /* The 4x8 RS Linear Transform */ | |
54 static const unsigned char RS[4][8] = { | |
55 { 0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E }, | |
56 { 0xA4, 0x56, 0x82, 0xF3, 0X1E, 0XC6, 0X68, 0XE5 }, | |
57 { 0X02, 0XA1, 0XFC, 0XC1, 0X47, 0XAE, 0X3D, 0X19 }, | |
58 { 0XA4, 0X55, 0X87, 0X5A, 0X58, 0XDB, 0X9E, 0X03 } | |
59 }; | |
60 | |
61 /* sbox usage orderings */ | |
62 static const unsigned char qord[4][5] = { | |
63 { 1, 1, 0, 0, 1 }, | |
64 { 0, 1, 1, 0, 0 }, | |
65 { 0, 0, 0, 1, 1 }, | |
66 { 1, 0, 1, 1, 0 } | |
67 }; | |
68 | |
69 #ifdef TWOFISH_TABLES | |
70 | |
71 #include "twofish_tab.c" | |
72 | |
73 #define sbox(i, x) ((ulong32)SBOX[i][(x)&255]) | |
74 | |
75 #else | |
76 | |
77 /* The Q-box tables */ | |
78 static const unsigned char qbox[2][4][16] = { | |
79 { | |
80 { 0x8, 0x1, 0x7, 0xD, 0x6, 0xF, 0x3, 0x2, 0x0, 0xB, 0x5, 0x9, 0xE, 0xC, 0xA, 0x4 }, | |
81 { 0xE, 0XC, 0XB, 0X8, 0X1, 0X2, 0X3, 0X5, 0XF, 0X4, 0XA, 0X6, 0X7, 0X0, 0X9, 0XD }, | |
82 { 0XB, 0XA, 0X5, 0XE, 0X6, 0XD, 0X9, 0X0, 0XC, 0X8, 0XF, 0X3, 0X2, 0X4, 0X7, 0X1 }, | |
83 { 0XD, 0X7, 0XF, 0X4, 0X1, 0X2, 0X6, 0XE, 0X9, 0XB, 0X3, 0X0, 0X8, 0X5, 0XC, 0XA } | |
84 }, | |
85 { | |
86 { 0X2, 0X8, 0XB, 0XD, 0XF, 0X7, 0X6, 0XE, 0X3, 0X1, 0X9, 0X4, 0X0, 0XA, 0XC, 0X5 }, | |
87 { 0X1, 0XE, 0X2, 0XB, 0X4, 0XC, 0X3, 0X7, 0X6, 0XD, 0XA, 0X5, 0XF, 0X9, 0X0, 0X8 }, | |
88 { 0X4, 0XC, 0X7, 0X5, 0X1, 0X6, 0X9, 0XA, 0X0, 0XE, 0XD, 0X8, 0X2, 0XB, 0X3, 0XF }, | |
89 { 0xB, 0X9, 0X5, 0X1, 0XC, 0X3, 0XD, 0XE, 0X6, 0X4, 0X7, 0XF, 0X2, 0X0, 0X8, 0XA } | |
90 } | |
91 }; | |
92 | |
93 /* computes S_i[x] */ | |
94 #ifdef LTC_CLEAN_STACK | |
95 static ulong32 _sbox(int i, ulong32 x) | |
96 #else | |
97 static ulong32 sbox(int i, ulong32 x) | |
98 #endif | |
99 { | |
100 unsigned char a0,b0,a1,b1,a2,b2,a3,b3,a4,b4,y; | |
101 | |
102 /* a0,b0 = [x/16], x mod 16 */ | |
103 a0 = (unsigned char)((x>>4)&15); | |
104 b0 = (unsigned char)((x)&15); | |
105 | |
106 /* a1 = a0 ^ b0 */ | |
107 a1 = a0 ^ b0; | |
108 | |
109 /* b1 = a0 ^ ROR(b0, 1) ^ 8a0 */ | |
110 b1 = (a0 ^ ((b0<<3)|(b0>>1)) ^ (a0<<3)) & 15; | |
111 | |
112 /* a2,b2 = t0[a1], t1[b1] */ | |
113 a2 = qbox[i][0][(int)a1]; | |
114 b2 = qbox[i][1][(int)b1]; | |
115 | |
116 /* a3 = a2 ^ b2 */ | |
117 a3 = a2 ^ b2; | |
118 | |
119 /* b3 = a2 ^ ROR(b2, 1) ^ 8a2 */ | |
120 b3 = (a2 ^ ((b2<<3)|(b2>>1)) ^ (a2<<3)) & 15; | |
121 | |
122 /* a4,b4 = t2[a3], t3[b3] */ | |
123 a4 = qbox[i][2][(int)a3]; | |
124 b4 = qbox[i][3][(int)b3]; | |
125 | |
126 /* y = 16b4 + a4 */ | |
127 y = (b4 << 4) + a4; | |
128 | |
129 /* return result */ | |
130 return (ulong32)y; | |
131 } | |
132 | |
133 #ifdef LTC_CLEAN_STACK | |
134 static ulong32 sbox(int i, ulong32 x) | |
135 { | |
136 ulong32 y; | |
137 y = _sbox(i, x); | |
138 burn_stack(sizeof(unsigned char) * 11); | |
139 return y; | |
140 } | |
141 #endif /* LTC_CLEAN_STACK */ | |
142 | |
143 #endif /* TWOFISH_TABLES */ | |
144 | |
145 /* computes ab mod p */ | |
146 static ulong32 gf_mult(ulong32 a, ulong32 b, ulong32 p) | |
147 { | |
148 ulong32 result, B[2], P[2]; | |
149 | |
150 P[1] = p; | |
151 B[1] = b; | |
152 result = P[0] = B[0] = 0; | |
153 | |
154 /* unrolled branchless GF multiplier */ | |
155 result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); | |
156 result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); | |
157 result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); | |
158 result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); | |
159 result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); | |
160 result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); | |
161 result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); | |
162 result ^= B[a&1]; | |
163 | |
164 return result; | |
165 } | |
166 | |
167 /* computes [y0 y1 y2 y3] = MDS . [x0] */ | |
168 #ifndef TWOFISH_TABLES | |
169 static ulong32 mds_column_mult(unsigned char in, int col) | |
170 { | |
171 ulong32 x01, x5B, xEF; | |
172 | |
173 x01 = in; | |
174 x5B = gf_mult(in, 0x5B, MDS_POLY); | |
175 xEF = gf_mult(in, 0xEF, MDS_POLY); | |
176 | |
177 switch (col) { | |
178 case 0: | |
179 return (x01 << 0 ) | | |
180 (x5B << 8 ) | | |
181 (xEF << 16) | | |
182 (xEF << 24); | |
183 case 1: | |
184 return (xEF << 0 ) | | |
185 (xEF << 8 ) | | |
186 (x5B << 16) | | |
187 (x01 << 24); | |
188 case 2: | |
189 return (x5B << 0 ) | | |
190 (xEF << 8 ) | | |
191 (x01 << 16) | | |
192 (xEF << 24); | |
193 case 3: | |
194 return (x5B << 0 ) | | |
195 (x01 << 8 ) | | |
196 (xEF << 16) | | |
197 (x5B << 24); | |
198 } | |
199 /* avoid warnings, we'd never get here normally but just to calm compiler warnings... */ | |
200 return 0; | |
201 } | |
202 | |
203 #else /* !TWOFISH_TABLES */ | |
204 | |
205 #define mds_column_mult(x, i) mds_tab[i][x] | |
206 | |
207 #endif /* TWOFISH_TABLES */ | |
208 | |
209 /* Computes [y0 y1 y2 y3] = MDS . [x0 x1 x2 x3] */ | |
210 static void mds_mult(const unsigned char *in, unsigned char *out) | |
211 { | |
212 int x; | |
213 ulong32 tmp; | |
214 for (tmp = x = 0; x < 4; x++) { | |
215 tmp ^= mds_column_mult(in[x], x); | |
216 } | |
217 STORE32L(tmp, out); | |
218 } | |
219 | |
220 #ifdef TWOFISH_ALL_TABLES | |
221 /* computes [y0 y1 y2 y3] = RS . [x0 x1 x2 x3 x4 x5 x6 x7] */ | |
222 static void rs_mult(const unsigned char *in, unsigned char *out) | |
223 { | |
224 ulong32 tmp; | |
225 tmp = rs_tab0[in[0]] ^ rs_tab1[in[1]] ^ rs_tab2[in[2]] ^ rs_tab3[in[3]] ^ | |
226 rs_tab4[in[4]] ^ rs_tab5[in[5]] ^ rs_tab6[in[6]] ^ rs_tab7[in[7]]; | |
227 STORE32L(tmp, out); | |
228 } | |
229 | |
230 #else /* !TWOFISH_ALL_TABLES */ | |
231 | |
232 /* computes [y0 y1 y2 y3] = RS . [x0 x1 x2 x3 x4 x5 x6 x7] */ | |
233 static void rs_mult(const unsigned char *in, unsigned char *out) | |
234 { | |
235 int x, y; | |
236 for (x = 0; x < 4; x++) { | |
237 out[x] = 0; | |
238 for (y = 0; y < 8; y++) { | |
239 out[x] ^= gf_mult(in[y], RS[x][y], RS_POLY); | |
240 } | |
241 } | |
242 } | |
243 | |
244 #endif | |
245 | |
246 /* computes h(x) */ | |
247 static void h_func(const unsigned char *in, unsigned char *out, unsigned char *M, int k, int offset) | |
248 { | |
249 int x; | |
250 unsigned char y[4]; | |
251 for (x = 0; x < 4; x++) { | |
252 y[x] = in[x]; | |
253 } | |
254 switch (k) { | |
255 case 4: | |
256 y[0] = (unsigned char)(sbox(1, (ulong32)y[0]) ^ M[4 * (6 + offset) + 0]); | |
257 y[1] = (unsigned char)(sbox(0, (ulong32)y[1]) ^ M[4 * (6 + offset) + 1]); | |
258 y[2] = (unsigned char)(sbox(0, (ulong32)y[2]) ^ M[4 * (6 + offset) + 2]); | |
259 y[3] = (unsigned char)(sbox(1, (ulong32)y[3]) ^ M[4 * (6 + offset) + 3]); | |
260 case 3: | |
261 y[0] = (unsigned char)(sbox(1, (ulong32)y[0]) ^ M[4 * (4 + offset) + 0]); | |
262 y[1] = (unsigned char)(sbox(1, (ulong32)y[1]) ^ M[4 * (4 + offset) + 1]); | |
263 y[2] = (unsigned char)(sbox(0, (ulong32)y[2]) ^ M[4 * (4 + offset) + 2]); | |
264 y[3] = (unsigned char)(sbox(0, (ulong32)y[3]) ^ M[4 * (4 + offset) + 3]); | |
265 case 2: | |
266 y[0] = (unsigned char)(sbox(1, sbox(0, sbox(0, (ulong32)y[0]) ^ M[4 * (2 + offset) + 0]) ^ M[4 * (0 + offset) + 0])); | |
267 y[1] = (unsigned char)(sbox(0, sbox(0, sbox(1, (ulong32)y[1]) ^ M[4 * (2 + offset) + 1]) ^ M[4 * (0 + offset) + 1])); | |
268 y[2] = (unsigned char)(sbox(1, sbox(1, sbox(0, (ulong32)y[2]) ^ M[4 * (2 + offset) + 2]) ^ M[4 * (0 + offset) + 2])); | |
269 y[3] = (unsigned char)(sbox(0, sbox(1, sbox(1, (ulong32)y[3]) ^ M[4 * (2 + offset) + 3]) ^ M[4 * (0 + offset) + 3])); | |
270 } | |
271 mds_mult(y, out); | |
272 } | |
273 | |
274 #ifndef TWOFISH_SMALL | |
275 | |
276 /* for GCC we don't use pointer aliases */ | |
277 #if defined(__GNUC__) | |
278 #define S1 skey->twofish.S[0] | |
279 #define S2 skey->twofish.S[1] | |
280 #define S3 skey->twofish.S[2] | |
281 #define S4 skey->twofish.S[3] | |
282 #endif | |
283 | |
284 /* the G function */ | |
285 #define g_func(x, dum) (S1[byte(x,0)] ^ S2[byte(x,1)] ^ S3[byte(x,2)] ^ S4[byte(x,3)]) | |
286 #define g1_func(x, dum) (S2[byte(x,0)] ^ S3[byte(x,1)] ^ S4[byte(x,2)] ^ S1[byte(x,3)]) | |
287 | |
288 #else | |
289 | |
290 #ifdef LTC_CLEAN_STACK | |
291 static ulong32 _g_func(ulong32 x, symmetric_key *key) | |
292 #else | |
293 static ulong32 g_func(ulong32 x, symmetric_key *key) | |
294 #endif | |
295 { | |
296 unsigned char g, i, y, z; | |
297 ulong32 res; | |
298 | |
299 res = 0; | |
300 for (y = 0; y < 4; y++) { | |
301 z = key->twofish.start; | |
302 | |
303 /* do unkeyed substitution */ | |
304 g = sbox(qord[y][z++], (x >> (8*y)) & 255); | |
305 | |
306 /* first subkey */ | |
307 i = 0; | |
308 | |
309 /* do key mixing+sbox until z==5 */ | |
310 while (z != 5) { | |
311 g = g ^ key->twofish.S[4*i++ + y]; | |
312 g = sbox(qord[y][z++], g); | |
313 } | |
314 | |
315 /* multiply g by a column of the MDS */ | |
316 res ^= mds_column_mult(g, y); | |
317 } | |
318 return res; | |
319 } | |
320 | |
321 #define g1_func(x, key) g_func(ROLc(x, 8), key) | |
322 | |
323 #ifdef LTC_CLEAN_STACK | |
324 static ulong32 g_func(ulong32 x, symmetric_key *key) | |
325 { | |
326 ulong32 y; | |
327 y = _g_func(x, key); | |
328 burn_stack(sizeof(unsigned char) * 4 + sizeof(ulong32)); | |
329 return y; | |
330 } | |
331 #endif /* LTC_CLEAN_STACK */ | |
332 | |
333 #endif /* TWOFISH_SMALL */ | |
334 | |
335 /** | |
336 Initialize the Twofish block cipher | |
337 @param key The symmetric key you wish to pass | |
338 @param keylen The key length in bytes | |
339 @param num_rounds The number of rounds desired (0 for default) | |
340 @param skey The key in as scheduled by this function. | |
341 @return CRYPT_OK if successful | |
342 */ | |
343 #ifdef LTC_CLEAN_STACK | |
344 static int _twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) | |
345 #else | |
346 int twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) | |
347 #endif | |
348 { | |
349 #ifndef TWOFISH_SMALL | |
350 unsigned char S[4*4], tmpx0, tmpx1; | |
351 #endif | |
352 int k, x, y; | |
353 unsigned char tmp[4], tmp2[4], M[8*4]; | |
354 ulong32 A, B; | |
355 | |
356 LTC_ARGCHK(key != NULL); | |
357 LTC_ARGCHK(skey != NULL); | |
358 | |
359 /* invalid arguments? */ | |
360 if (num_rounds != 16 && num_rounds != 0) { | |
361 return CRYPT_INVALID_ROUNDS; | |
362 } | |
363 | |
364 if (keylen != 16 && keylen != 24 && keylen != 32) { | |
365 return CRYPT_INVALID_KEYSIZE; | |
366 } | |
367 | |
368 /* k = keysize/64 [but since our keysize is in bytes...] */ | |
369 k = keylen / 8; | |
370 | |
371 /* copy the key into M */ | |
372 for (x = 0; x < keylen; x++) { | |
373 M[x] = key[x] & 255; | |
374 } | |
375 | |
376 /* create the S[..] words */ | |
377 #ifndef TWOFISH_SMALL | |
378 for (x = 0; x < k; x++) { | |
379 rs_mult(M+(x*8), S+(x*4)); | |
380 } | |
381 #else | |
382 for (x = 0; x < k; x++) { | |
383 rs_mult(M+(x*8), skey->twofish.S+(x*4)); | |
384 } | |
385 #endif | |
386 | |
387 /* make subkeys */ | |
388 for (x = 0; x < 20; x++) { | |
389 /* A = h(p * 2x, Me) */ | |
390 for (y = 0; y < 4; y++) { | |
391 tmp[y] = x+x; | |
392 } | |
393 h_func(tmp, tmp2, M, k, 0); | |
394 LOAD32L(A, tmp2); | |
395 | |
396 /* B = ROL(h(p * (2x + 1), Mo), 8) */ | |
397 for (y = 0; y < 4; y++) { | |
398 tmp[y] = (unsigned char)(x+x+1); | |
399 } | |
400 h_func(tmp, tmp2, M, k, 1); | |
401 LOAD32L(B, tmp2); | |
402 B = ROLc(B, 8); | |
403 | |
404 /* K[2i] = A + B */ | |
405 skey->twofish.K[x+x] = (A + B) & 0xFFFFFFFFUL; | |
406 | |
407 /* K[2i+1] = (A + 2B) <<< 9 */ | |
408 skey->twofish.K[x+x+1] = ROLc(B + B + A, 9); | |
409 } | |
410 | |
411 #ifndef TWOFISH_SMALL | |
412 /* make the sboxes (large ram variant) */ | |
413 if (k == 2) { | |
414 for (x = 0; x < 256; x++) { | |
415 tmpx0 = sbox(0, x); | |
416 tmpx1 = sbox(1, x); | |
417 skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, tmpx0 ^ S[0]) ^ S[4])),0); | |
418 skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, tmpx1 ^ S[1]) ^ S[5])),1); | |
419 skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, tmpx0 ^ S[2]) ^ S[6])),2); | |
420 skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, tmpx1 ^ S[3]) ^ S[7])),3); | |
421 } | |
422 } else if (k == 3) { | |
423 for (x = 0; x < 256; x++) { | |
424 tmpx0 = sbox(0, x); | |
425 tmpx1 = sbox(1, x); | |
426 skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, sbox(0, tmpx1 ^ S[0]) ^ S[4]) ^ S[8])),0); | |
427 skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, sbox(1, tmpx1 ^ S[1]) ^ S[5]) ^ S[9])),1); | |
428 skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, sbox(0, tmpx0 ^ S[2]) ^ S[6]) ^ S[10])),2); | |
429 skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, sbox(1, tmpx0 ^ S[3]) ^ S[7]) ^ S[11])),3); | |
430 } | |
431 } else { | |
432 for (x = 0; x < 256; x++) { | |
433 tmpx0 = sbox(0, x); | |
434 tmpx1 = sbox(1, x); | |
435 skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, sbox(0, sbox(1, tmpx1 ^ S[0]) ^ S[4]) ^ S[8]) ^ S[12])),0); | |
436 skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, sbox(1, sbox(1, tmpx0 ^ S[1]) ^ S[5]) ^ S[9]) ^ S[13])),1); | |
437 skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, sbox(0, sbox(0, tmpx0 ^ S[2]) ^ S[6]) ^ S[10]) ^ S[14])),2); | |
438 skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, sbox(1, sbox(0, tmpx1 ^ S[3]) ^ S[7]) ^ S[11]) ^ S[15])),3); | |
439 } | |
440 } | |
441 #else | |
442 /* where to start in the sbox layers */ | |
443 /* small ram variant */ | |
444 switch (k) { | |
445 case 4 : skey->twofish.start = 0; break; | |
446 case 3 : skey->twofish.start = 1; break; | |
447 default: skey->twofish.start = 2; break; | |
448 } | |
449 #endif | |
450 return CRYPT_OK; | |
451 } | |
452 | |
453 #ifdef LTC_CLEAN_STACK | |
454 int twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) | |
455 { | |
456 int x; | |
457 x = _twofish_setup(key, keylen, num_rounds, skey); | |
458 burn_stack(sizeof(int) * 7 + sizeof(unsigned char) * 56 + sizeof(ulong32) * 2); | |
459 return x; | |
460 } | |
461 #endif | |
462 | |
463 /** | |
464 Encrypts a block of text with Twofish | |
465 @param pt The input plaintext (16 bytes) | |
466 @param ct The output ciphertext (16 bytes) | |
467 @param skey The key as scheduled | |
468 */ | |
469 #ifdef LTC_CLEAN_STACK | |
470 static void _twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) | |
471 #else | |
472 void twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) | |
473 #endif | |
474 { | |
475 ulong32 a,b,c,d,ta,tb,tc,td,t1,t2, *k; | |
476 int r; | |
477 #if !defined(TWOFISH_SMALL) && !defined(__GNUC__) | |
478 ulong32 *S1, *S2, *S3, *S4; | |
479 #endif | |
480 | |
481 LTC_ARGCHK(pt != NULL); | |
482 LTC_ARGCHK(ct != NULL); | |
483 LTC_ARGCHK(skey != NULL); | |
484 | |
485 #if !defined(TWOFISH_SMALL) && !defined(__GNUC__) | |
486 S1 = skey->twofish.S[0]; | |
487 S2 = skey->twofish.S[1]; | |
488 S3 = skey->twofish.S[2]; | |
489 S4 = skey->twofish.S[3]; | |
490 #endif | |
491 | |
492 LOAD32L(a,&pt[0]); LOAD32L(b,&pt[4]); | |
493 LOAD32L(c,&pt[8]); LOAD32L(d,&pt[12]); | |
494 a ^= skey->twofish.K[0]; | |
495 b ^= skey->twofish.K[1]; | |
496 c ^= skey->twofish.K[2]; | |
497 d ^= skey->twofish.K[3]; | |
498 | |
499 k = skey->twofish.K + 8; | |
500 for (r = 8; r != 0; --r) { | |
501 t2 = g1_func(b, skey); | |
502 t1 = g_func(a, skey) + t2; | |
503 c = RORc(c ^ (t1 + k[0]), 1); | |
504 d = ROLc(d, 1) ^ (t2 + t1 + k[1]); | |
505 | |
506 t2 = g1_func(d, skey); | |
507 t1 = g_func(c, skey) + t2; | |
508 a = RORc(a ^ (t1 + k[2]), 1); | |
509 b = ROLc(b, 1) ^ (t2 + t1 + k[3]); | |
510 k += 4; | |
511 } | |
512 | |
513 /* output with "undo last swap" */ | |
514 ta = c ^ skey->twofish.K[4]; | |
515 tb = d ^ skey->twofish.K[5]; | |
516 tc = a ^ skey->twofish.K[6]; | |
517 td = b ^ skey->twofish.K[7]; | |
518 | |
519 /* store output */ | |
520 STORE32L(ta,&ct[0]); STORE32L(tb,&ct[4]); | |
521 STORE32L(tc,&ct[8]); STORE32L(td,&ct[12]); | |
522 } | |
523 | |
524 #ifdef LTC_CLEAN_STACK | |
525 void twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) | |
526 { | |
527 _twofish_ecb_encrypt(pt, ct, skey); | |
528 burn_stack(sizeof(ulong32) * 10 + sizeof(int)); | |
529 } | |
530 #endif | |
531 | |
532 /** | |
533 Decrypts a block of text with Twofish | |
534 @param ct The input ciphertext (16 bytes) | |
535 @param pt The output plaintext (16 bytes) | |
536 @param skey The key as scheduled | |
537 */ | |
538 #ifdef LTC_CLEAN_STACK | |
539 static void _twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) | |
540 #else | |
541 void twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) | |
542 #endif | |
543 { | |
544 ulong32 a,b,c,d,ta,tb,tc,td,t1,t2, *k; | |
545 int r; | |
546 #if !defined(TWOFISH_SMALL) && !defined(__GNUC__) | |
547 ulong32 *S1, *S2, *S3, *S4; | |
548 #endif | |
549 | |
550 LTC_ARGCHK(pt != NULL); | |
551 LTC_ARGCHK(ct != NULL); | |
552 LTC_ARGCHK(skey != NULL); | |
553 | |
554 #if !defined(TWOFISH_SMALL) && !defined(__GNUC__) | |
555 S1 = skey->twofish.S[0]; | |
556 S2 = skey->twofish.S[1]; | |
557 S3 = skey->twofish.S[2]; | |
558 S4 = skey->twofish.S[3]; | |
559 #endif | |
560 | |
561 /* load input */ | |
562 LOAD32L(ta,&ct[0]); LOAD32L(tb,&ct[4]); | |
563 LOAD32L(tc,&ct[8]); LOAD32L(td,&ct[12]); | |
564 | |
565 /* undo undo final swap */ | |
566 a = tc ^ skey->twofish.K[6]; | |
567 b = td ^ skey->twofish.K[7]; | |
568 c = ta ^ skey->twofish.K[4]; | |
569 d = tb ^ skey->twofish.K[5]; | |
570 | |
571 k = skey->twofish.K + 36; | |
572 for (r = 8; r != 0; --r) { | |
573 t2 = g1_func(d, skey); | |
574 t1 = g_func(c, skey) + t2; | |
575 a = ROLc(a, 1) ^ (t1 + k[2]); | |
576 b = RORc(b ^ (t2 + t1 + k[3]), 1); | |
577 | |
578 t2 = g1_func(b, skey); | |
579 t1 = g_func(a, skey) + t2; | |
580 c = ROLc(c, 1) ^ (t1 + k[0]); | |
581 d = RORc(d ^ (t2 + t1 + k[1]), 1); | |
582 k -= 4; | |
583 } | |
584 | |
585 /* pre-white */ | |
586 a ^= skey->twofish.K[0]; | |
587 b ^= skey->twofish.K[1]; | |
588 c ^= skey->twofish.K[2]; | |
589 d ^= skey->twofish.K[3]; | |
590 | |
591 /* store */ | |
592 STORE32L(a, &pt[0]); STORE32L(b, &pt[4]); | |
593 STORE32L(c, &pt[8]); STORE32L(d, &pt[12]); | |
594 } | |
595 | |
596 #ifdef LTC_CLEAN_STACK | |
597 void twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) | |
598 { | |
599 _twofish_ecb_decrypt(ct, pt, skey); | |
600 burn_stack(sizeof(ulong32) * 10 + sizeof(int)); | |
601 } | |
602 #endif | |
603 | |
604 /** | |
605 Performs a self-test of the Twofish block cipher | |
606 @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled | |
607 */ | |
608 int twofish_test(void) | |
609 { | |
610 #ifndef LTC_TEST | |
611 return CRYPT_NOP; | |
612 #else | |
613 static const struct { | |
614 int keylen; | |
615 unsigned char key[32], pt[16], ct[16]; | |
616 } tests[] = { | |
617 { 16, | |
618 { 0x9F, 0x58, 0x9F, 0x5C, 0xF6, 0x12, 0x2C, 0x32, | |
619 0xB6, 0xBF, 0xEC, 0x2F, 0x2A, 0xE8, 0xC3, 0x5A }, | |
620 { 0xD4, 0x91, 0xDB, 0x16, 0xE7, 0xB1, 0xC3, 0x9E, | |
621 0x86, 0xCB, 0x08, 0x6B, 0x78, 0x9F, 0x54, 0x19 }, | |
622 { 0x01, 0x9F, 0x98, 0x09, 0xDE, 0x17, 0x11, 0x85, | |
623 0x8F, 0xAA, 0xC3, 0xA3, 0xBA, 0x20, 0xFB, 0xC3 } | |
624 }, { | |
625 24, | |
626 { 0x88, 0xB2, 0xB2, 0x70, 0x6B, 0x10, 0x5E, 0x36, | |
627 0xB4, 0x46, 0xBB, 0x6D, 0x73, 0x1A, 0x1E, 0x88, | |
628 0xEF, 0xA7, 0x1F, 0x78, 0x89, 0x65, 0xBD, 0x44 }, | |
629 { 0x39, 0xDA, 0x69, 0xD6, 0xBA, 0x49, 0x97, 0xD5, | |
630 0x85, 0xB6, 0xDC, 0x07, 0x3C, 0xA3, 0x41, 0xB2 }, | |
631 { 0x18, 0x2B, 0x02, 0xD8, 0x14, 0x97, 0xEA, 0x45, | |
632 0xF9, 0xDA, 0xAC, 0xDC, 0x29, 0x19, 0x3A, 0x65 } | |
633 }, { | |
634 32, | |
635 { 0xD4, 0x3B, 0xB7, 0x55, 0x6E, 0xA3, 0x2E, 0x46, | |
636 0xF2, 0xA2, 0x82, 0xB7, 0xD4, 0x5B, 0x4E, 0x0D, | |
637 0x57, 0xFF, 0x73, 0x9D, 0x4D, 0xC9, 0x2C, 0x1B, | |
638 0xD7, 0xFC, 0x01, 0x70, 0x0C, 0xC8, 0x21, 0x6F }, | |
639 { 0x90, 0xAF, 0xE9, 0x1B, 0xB2, 0x88, 0x54, 0x4F, | |
640 0x2C, 0x32, 0xDC, 0x23, 0x9B, 0x26, 0x35, 0xE6 }, | |
641 { 0x6C, 0xB4, 0x56, 0x1C, 0x40, 0xBF, 0x0A, 0x97, | |
642 0x05, 0x93, 0x1C, 0xB6, 0xD4, 0x08, 0xE7, 0xFA } | |
643 } | |
644 }; | |
645 | |
646 | |
647 symmetric_key key; | |
648 unsigned char tmp[2][16]; | |
649 int err, i, y; | |
650 | |
651 for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) { | |
652 if ((err = twofish_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) { | |
653 return err; | |
654 } | |
655 twofish_ecb_encrypt(tests[i].pt, tmp[0], &key); | |
656 twofish_ecb_decrypt(tmp[0], tmp[1], &key); | |
657 if (memcmp(tmp[0], tests[i].ct, 16) != 0 || memcmp(tmp[1], tests[i].pt, 16) != 0) { | |
658 return CRYPT_FAIL_TESTVECTOR; | |
659 } | |
660 /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ | |
661 for (y = 0; y < 16; y++) tmp[0][y] = 0; | |
662 for (y = 0; y < 1000; y++) twofish_ecb_encrypt(tmp[0], tmp[0], &key); | |
663 for (y = 0; y < 1000; y++) twofish_ecb_decrypt(tmp[0], tmp[0], &key); | |
664 for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; | |
665 } | |
666 return CRYPT_OK; | |
667 #endif | |
668 } | |
669 | |
670 /** Terminate the context | |
671 @param skey The scheduled key | |
672 */ | |
673 void twofish_done(symmetric_key *skey) | |
674 { | |
675 } | |
676 | |
677 /** | |
678 Gets suitable key size | |
679 @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable. | |
680 @return CRYPT_OK if the input key size is acceptable. | |
681 */ | |
682 int twofish_keysize(int *keysize) | |
683 { | |
684 LTC_ARGCHK(keysize); | |
685 if (*keysize < 16) | |
686 return CRYPT_INVALID_KEYSIZE; | |
687 if (*keysize < 24) { | |
688 *keysize = 16; | |
689 return CRYPT_OK; | |
690 } else if (*keysize < 32) { | |
691 *keysize = 24; | |
692 return CRYPT_OK; | |
693 } else { | |
694 *keysize = 32; | |
695 return CRYPT_OK; | |
696 } | |
697 } | |
698 | |
699 #endif | |
700 | |
701 | |
702 | |
703 | |
704 /* $Source: /cvs/libtom/libtomcrypt/src/ciphers/twofish/twofish.c,v $ */ | |
705 /* $Revision: 1.8 $ */ | |
706 /* $Date: 2005/05/05 14:35:58 $ */ |