Mercurial > dropbear
comparison chc.c @ 143:5d99163f7e32 libtomcrypt-orig
import of libtomcrypt 0.99
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Sun, 19 Dec 2004 11:34:45 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
15:6362d3854bb4 | 143:5d99163f7e32 |
---|---|
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis | |
2 * | |
3 * LibTomCrypt is a library that provides various cryptographic | |
4 * algorithms in a highly modular and flexible manner. | |
5 * | |
6 * The library is free for all purposes without any express | |
7 * guarantee it works. | |
8 * | |
9 * Tom St Denis, [email protected], http://libtomcrypt.org | |
10 */ | |
11 | |
12 #include "mycrypt.h" | |
13 | |
14 #ifdef CHC_HASH | |
15 | |
16 #define UNDEFED_HASH -17 | |
17 | |
18 /* chc settings */ | |
19 static int cipher_idx=UNDEFED_HASH, /* which cipher */ | |
20 cipher_blocksize; /* blocksize of cipher */ | |
21 | |
22 | |
23 const struct _hash_descriptor chc_desc = { | |
24 "chc_hash", 12, 0, 0, { 0 }, 0, | |
25 &chc_init, | |
26 &chc_process, | |
27 &chc_done, | |
28 &chc_test | |
29 }; | |
30 | |
31 /* initialize the CHC state with a given cipher */ | |
32 int chc_register(int cipher) | |
33 { | |
34 int err, kl, idx; | |
35 | |
36 if ((err = cipher_is_valid(cipher)) != CRYPT_OK) { | |
37 return err; | |
38 } | |
39 | |
40 /* will it be valid? */ | |
41 kl = cipher_descriptor[cipher].block_length; | |
42 | |
43 /* must be >64 bit block */ | |
44 if (kl <= 8) { | |
45 return CRYPT_INVALID_CIPHER; | |
46 } | |
47 | |
48 /* can we use the ideal keysize? */ | |
49 if ((err = cipher_descriptor[cipher].keysize(&kl)) != CRYPT_OK) { | |
50 return err; | |
51 } | |
52 /* we require that key size == block size be a valid choice */ | |
53 if (kl != cipher_descriptor[cipher].block_length) { | |
54 return CRYPT_INVALID_CIPHER; | |
55 } | |
56 | |
57 /* determine if chc_hash has been register_hash'ed already */ | |
58 if ((err = hash_is_valid(idx = find_hash("chc_hash"))) != CRYPT_OK) { | |
59 return err; | |
60 } | |
61 | |
62 /* store into descriptor */ | |
63 hash_descriptor[idx].hashsize = | |
64 hash_descriptor[idx].blocksize = cipher_descriptor[cipher].block_length; | |
65 | |
66 /* store the idx and block size */ | |
67 cipher_idx = cipher; | |
68 cipher_blocksize = cipher_descriptor[cipher].block_length; | |
69 return CRYPT_OK; | |
70 } | |
71 | |
72 /* "hash init" is simply encrypt 0 with the 0 key. Simple way to make an IV */ | |
73 int chc_init(hash_state *md) | |
74 { | |
75 symmetric_key *key; | |
76 unsigned char buf[MAXBLOCKSIZE]; | |
77 int err; | |
78 | |
79 _ARGCHK(md != NULL); | |
80 | |
81 /* is the cipher valid? */ | |
82 if ((err = cipher_is_valid(cipher_idx)) != CRYPT_OK) { | |
83 return err; | |
84 } | |
85 | |
86 if (cipher_blocksize != cipher_descriptor[cipher_idx].block_length) { | |
87 return CRYPT_INVALID_CIPHER; | |
88 } | |
89 | |
90 if ((key = XMALLOC(sizeof(*key))) == NULL) { | |
91 return CRYPT_MEM; | |
92 } | |
93 | |
94 /* zero key and what not */ | |
95 zeromem(buf, cipher_blocksize); | |
96 if ((err = cipher_descriptor[cipher_idx].setup(buf, cipher_blocksize, 0, key)) != CRYPT_OK) { | |
97 XFREE(key); | |
98 return err; | |
99 } | |
100 | |
101 /* encrypt zero block */ | |
102 cipher_descriptor[cipher_idx].ecb_encrypt(buf, md->chc.state, key); | |
103 | |
104 /* zero other members */ | |
105 md->chc.length = 0; | |
106 md->chc.curlen = 0; | |
107 zeromem(md->chc.buf, sizeof(md->chc.buf)); | |
108 XFREE(key); | |
109 return CRYPT_OK; | |
110 } | |
111 | |
112 /* | |
113 key <= state | |
114 T0,T1 <= block | |
115 T0 <= encrypt T0 | |
116 state <= state xor T0 xor T1 | |
117 */ | |
118 static int chc_compress(hash_state *md, unsigned char *buf) | |
119 { | |
120 unsigned char T[2][MAXBLOCKSIZE]; | |
121 symmetric_key *key; | |
122 int err, x; | |
123 | |
124 if ((key = XMALLOC(sizeof(*key))) == NULL) { | |
125 return CRYPT_MEM; | |
126 } | |
127 if ((err = cipher_descriptor[cipher_idx].setup(md->chc.state, cipher_blocksize, 0, key)) != CRYPT_OK) { | |
128 XFREE(key); | |
129 return err; | |
130 } | |
131 memcpy(T[1], buf, cipher_blocksize); | |
132 cipher_descriptor[cipher_idx].ecb_encrypt(buf, T[0], key); | |
133 for (x = 0; x < cipher_blocksize; x++) { | |
134 md->chc.state[x] ^= T[0][x] ^ T[1][x]; | |
135 } | |
136 XFREE(key); | |
137 #ifdef CLEAN_STACK | |
138 zeromem(T, sizeof(T)); | |
139 zeromem(&key, sizeof(key)); | |
140 #endif | |
141 return CRYPT_OK; | |
142 } | |
143 | |
144 HASH_PROCESS(_chc_process, chc_compress, chc, (unsigned long)cipher_blocksize) | |
145 | |
146 int chc_process(hash_state * md, const unsigned char *buf, unsigned long len) | |
147 { | |
148 int err; | |
149 | |
150 _ARGCHK(md != NULL); | |
151 _ARGCHK(buf != NULL); | |
152 | |
153 /* is the cipher valid? */ | |
154 if ((err = cipher_is_valid(cipher_idx)) != CRYPT_OK) { | |
155 return err; | |
156 } | |
157 if (cipher_blocksize != cipher_descriptor[cipher_idx].block_length) { | |
158 return CRYPT_INVALID_CIPHER; | |
159 } | |
160 | |
161 return _chc_process(md, buf, len); | |
162 } | |
163 | |
164 int chc_done(hash_state *md, unsigned char *buf) | |
165 { | |
166 int err; | |
167 | |
168 _ARGCHK(md != NULL); | |
169 _ARGCHK(buf != NULL); | |
170 | |
171 /* is the cipher valid? */ | |
172 if ((err = cipher_is_valid(cipher_idx)) != CRYPT_OK) { | |
173 return err; | |
174 } | |
175 if (cipher_blocksize != cipher_descriptor[cipher_idx].block_length) { | |
176 return CRYPT_INVALID_CIPHER; | |
177 } | |
178 | |
179 if (md->chc.curlen >= sizeof(md->chc.buf)) { | |
180 return CRYPT_INVALID_ARG; | |
181 } | |
182 | |
183 /* increase the length of the message */ | |
184 md->chc.length += md->chc.curlen * 8; | |
185 | |
186 /* append the '1' bit */ | |
187 md->chc.buf[md->chc.curlen++] = (unsigned char)0x80; | |
188 | |
189 /* if the length is currently above l-8 bytes we append zeros | |
190 * then compress. Then we can fall back to padding zeros and length | |
191 * encoding like normal. | |
192 */ | |
193 if (md->chc.curlen > (unsigned long)(cipher_blocksize - 8)) { | |
194 while (md->chc.curlen < (unsigned long)cipher_blocksize) { | |
195 md->chc.buf[md->chc.curlen++] = (unsigned char)0; | |
196 } | |
197 chc_compress(md, md->chc.buf); | |
198 md->chc.curlen = 0; | |
199 } | |
200 | |
201 /* pad upto l-8 bytes of zeroes */ | |
202 while (md->chc.curlen < (unsigned long)(cipher_blocksize - 8)) { | |
203 md->chc.buf[md->chc.curlen++] = (unsigned char)0; | |
204 } | |
205 | |
206 /* store length */ | |
207 STORE64L(md->chc.length, md->chc.buf+(cipher_blocksize-8)); | |
208 chc_compress(md, md->chc.buf); | |
209 | |
210 /* copy output */ | |
211 XMEMCPY(buf, md->chc.state, cipher_blocksize); | |
212 | |
213 #ifdef CLEAN_STACK | |
214 zeromem(md, sizeof(hash_state)); | |
215 #endif | |
216 return CRYPT_OK; | |
217 } | |
218 | |
219 int chc_test(void) | |
220 { | |
221 static const struct { | |
222 unsigned char *msg, | |
223 md[MAXBLOCKSIZE]; | |
224 int len; | |
225 } tests[] = { | |
226 { | |
227 (unsigned char *)"hello world", | |
228 { 0xcf, 0x57, 0x9d, 0xc3, 0x0a, 0x0e, 0xea, 0x61, | |
229 0x0d, 0x54, 0x47, 0xc4, 0x3c, 0x06, 0xf5, 0x4e }, | |
230 16 | |
231 } | |
232 }; | |
233 int x, oldhashidx, idx; | |
234 unsigned char out[MAXBLOCKSIZE]; | |
235 hash_state md; | |
236 | |
237 /* AES can be under rijndael or aes... try to find it */ | |
238 if ((idx = find_cipher("aes")) == -1) { | |
239 if ((idx = find_cipher("rijndael")) == -1) { | |
240 return CRYPT_NOP; | |
241 } | |
242 } | |
243 oldhashidx = cipher_idx; | |
244 chc_register(idx); | |
245 | |
246 for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) { | |
247 chc_init(&md); | |
248 chc_process(&md, tests[x].msg, strlen((char *)tests[x].msg)); | |
249 chc_done(&md, out); | |
250 if (memcmp(out, tests[x].md, tests[x].len)) { | |
251 return CRYPT_FAIL_TESTVECTOR; | |
252 } | |
253 } | |
254 if (oldhashidx != UNDEFED_HASH) { | |
255 chc_register(oldhashidx); | |
256 } | |
257 | |
258 return CRYPT_OK; | |
259 } | |
260 | |
261 #endif |