Mercurial > dropbear
comparison libtommath/bn_mp_div.c @ 389:5ff8218bcee9
propagate from branch 'au.asn.ucc.matt.ltm.dropbear' (head 2af95f00ebd5bb7a28b3817db1218442c935388e)
to branch 'au.asn.ucc.matt.dropbear' (head ecd779509ef23a8cdf64888904fc9b31d78aa933)
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Thu, 11 Jan 2007 03:14:55 +0000 |
parents | 1c7a072000e0 |
children | 60fc6476e044 |
comparison
equal
deleted
inserted
replaced
388:fb54020f78e1 | 389:5ff8218bcee9 |
---|---|
1 #include <tommath.h> | |
2 #ifdef BN_MP_DIV_C | |
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
4 * | |
5 * LibTomMath is a library that provides multiple-precision | |
6 * integer arithmetic as well as number theoretic functionality. | |
7 * | |
8 * The library was designed directly after the MPI library by | |
9 * Michael Fromberger but has been written from scratch with | |
10 * additional optimizations in place. | |
11 * | |
12 * The library is free for all purposes without any express | |
13 * guarantee it works. | |
14 * | |
15 * Tom St Denis, [email protected], http://math.libtomcrypt.com | |
16 */ | |
17 | |
18 #ifdef BN_MP_DIV_SMALL | |
19 | |
20 /* slower bit-bang division... also smaller */ | |
21 int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d) | |
22 { | |
23 mp_int ta, tb, tq, q; | |
24 int res, n, n2; | |
25 | |
26 /* is divisor zero ? */ | |
27 if (mp_iszero (b) == 1) { | |
28 return MP_VAL; | |
29 } | |
30 | |
31 /* if a < b then q=0, r = a */ | |
32 if (mp_cmp_mag (a, b) == MP_LT) { | |
33 if (d != NULL) { | |
34 res = mp_copy (a, d); | |
35 } else { | |
36 res = MP_OKAY; | |
37 } | |
38 if (c != NULL) { | |
39 mp_zero (c); | |
40 } | |
41 return res; | |
42 } | |
43 | |
44 /* init our temps */ | |
45 if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) { | |
46 return res; | |
47 } | |
48 | |
49 | |
50 mp_set(&tq, 1); | |
51 n = mp_count_bits(a) - mp_count_bits(b); | |
52 if (((res = mp_abs(a, &ta)) != MP_OKAY) || | |
53 ((res = mp_abs(b, &tb)) != MP_OKAY) || | |
54 ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) || | |
55 ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) { | |
56 goto LBL_ERR; | |
57 } | |
58 | |
59 while (n-- >= 0) { | |
60 if (mp_cmp(&tb, &ta) != MP_GT) { | |
61 if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) || | |
62 ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) { | |
63 goto LBL_ERR; | |
64 } | |
65 } | |
66 if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) || | |
67 ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) { | |
68 goto LBL_ERR; | |
69 } | |
70 } | |
71 | |
72 /* now q == quotient and ta == remainder */ | |
73 n = a->sign; | |
74 n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG); | |
75 if (c != NULL) { | |
76 mp_exch(c, &q); | |
77 c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2; | |
78 } | |
79 if (d != NULL) { | |
80 mp_exch(d, &ta); | |
81 d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n; | |
82 } | |
83 LBL_ERR: | |
84 mp_clear_multi(&ta, &tb, &tq, &q, NULL); | |
85 return res; | |
86 } | |
87 | |
88 #else | |
89 | |
90 /* integer signed division. | |
91 * c*b + d == a [e.g. a/b, c=quotient, d=remainder] | |
92 * HAC pp.598 Algorithm 14.20 | |
93 * | |
94 * Note that the description in HAC is horribly | |
95 * incomplete. For example, it doesn't consider | |
96 * the case where digits are removed from 'x' in | |
97 * the inner loop. It also doesn't consider the | |
98 * case that y has fewer than three digits, etc.. | |
99 * | |
100 * The overall algorithm is as described as | |
101 * 14.20 from HAC but fixed to treat these cases. | |
102 */ | |
103 int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d) | |
104 { | |
105 mp_int q, x, y, t1, t2; | |
106 int res, n, t, i, norm, neg; | |
107 | |
108 /* is divisor zero ? */ | |
109 if (mp_iszero (b) == 1) { | |
110 return MP_VAL; | |
111 } | |
112 | |
113 /* if a < b then q=0, r = a */ | |
114 if (mp_cmp_mag (a, b) == MP_LT) { | |
115 if (d != NULL) { | |
116 res = mp_copy (a, d); | |
117 } else { | |
118 res = MP_OKAY; | |
119 } | |
120 if (c != NULL) { | |
121 mp_zero (c); | |
122 } | |
123 return res; | |
124 } | |
125 | |
126 if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) { | |
127 return res; | |
128 } | |
129 q.used = a->used + 2; | |
130 | |
131 if ((res = mp_init (&t1)) != MP_OKAY) { | |
132 goto LBL_Q; | |
133 } | |
134 | |
135 if ((res = mp_init (&t2)) != MP_OKAY) { | |
136 goto LBL_T1; | |
137 } | |
138 | |
139 if ((res = mp_init_copy (&x, a)) != MP_OKAY) { | |
140 goto LBL_T2; | |
141 } | |
142 | |
143 if ((res = mp_init_copy (&y, b)) != MP_OKAY) { | |
144 goto LBL_X; | |
145 } | |
146 | |
147 /* fix the sign */ | |
148 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; | |
149 x.sign = y.sign = MP_ZPOS; | |
150 | |
151 /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */ | |
152 norm = mp_count_bits(&y) % DIGIT_BIT; | |
153 if (norm < (int)(DIGIT_BIT-1)) { | |
154 norm = (DIGIT_BIT-1) - norm; | |
155 if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) { | |
156 goto LBL_Y; | |
157 } | |
158 if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) { | |
159 goto LBL_Y; | |
160 } | |
161 } else { | |
162 norm = 0; | |
163 } | |
164 | |
165 /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */ | |
166 n = x.used - 1; | |
167 t = y.used - 1; | |
168 | |
169 /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ | |
170 if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */ | |
171 goto LBL_Y; | |
172 } | |
173 | |
174 while (mp_cmp (&x, &y) != MP_LT) { | |
175 ++(q.dp[n - t]); | |
176 if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) { | |
177 goto LBL_Y; | |
178 } | |
179 } | |
180 | |
181 /* reset y by shifting it back down */ | |
182 mp_rshd (&y, n - t); | |
183 | |
184 /* step 3. for i from n down to (t + 1) */ | |
185 for (i = n; i >= (t + 1); i--) { | |
186 if (i > x.used) { | |
187 continue; | |
188 } | |
189 | |
190 /* step 3.1 if xi == yt then set q{i-t-1} to b-1, | |
191 * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ | |
192 if (x.dp[i] == y.dp[t]) { | |
193 q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1); | |
194 } else { | |
195 mp_word tmp; | |
196 tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT); | |
197 tmp |= ((mp_word) x.dp[i - 1]); | |
198 tmp /= ((mp_word) y.dp[t]); | |
199 if (tmp > (mp_word) MP_MASK) | |
200 tmp = MP_MASK; | |
201 q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK)); | |
202 } | |
203 | |
204 /* while (q{i-t-1} * (yt * b + y{t-1})) > | |
205 xi * b**2 + xi-1 * b + xi-2 | |
206 | |
207 do q{i-t-1} -= 1; | |
208 */ | |
209 q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK; | |
210 do { | |
211 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK; | |
212 | |
213 /* find left hand */ | |
214 mp_zero (&t1); | |
215 t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1]; | |
216 t1.dp[1] = y.dp[t]; | |
217 t1.used = 2; | |
218 if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) { | |
219 goto LBL_Y; | |
220 } | |
221 | |
222 /* find right hand */ | |
223 t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2]; | |
224 t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1]; | |
225 t2.dp[2] = x.dp[i]; | |
226 t2.used = 3; | |
227 } while (mp_cmp_mag(&t1, &t2) == MP_GT); | |
228 | |
229 /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ | |
230 if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) { | |
231 goto LBL_Y; | |
232 } | |
233 | |
234 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { | |
235 goto LBL_Y; | |
236 } | |
237 | |
238 if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) { | |
239 goto LBL_Y; | |
240 } | |
241 | |
242 /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ | |
243 if (x.sign == MP_NEG) { | |
244 if ((res = mp_copy (&y, &t1)) != MP_OKAY) { | |
245 goto LBL_Y; | |
246 } | |
247 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { | |
248 goto LBL_Y; | |
249 } | |
250 if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) { | |
251 goto LBL_Y; | |
252 } | |
253 | |
254 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK; | |
255 } | |
256 } | |
257 | |
258 /* now q is the quotient and x is the remainder | |
259 * [which we have to normalize] | |
260 */ | |
261 | |
262 /* get sign before writing to c */ | |
263 x.sign = x.used == 0 ? MP_ZPOS : a->sign; | |
264 | |
265 if (c != NULL) { | |
266 mp_clamp (&q); | |
267 mp_exch (&q, c); | |
268 c->sign = neg; | |
269 } | |
270 | |
271 if (d != NULL) { | |
272 if ((res = mp_div_2d (&x, norm, &x, NULL)) != MP_OKAY) { | |
273 goto LBL_Y; | |
274 } | |
275 mp_exch (&x, d); | |
276 } | |
277 | |
278 res = MP_OKAY; | |
279 | |
280 LBL_Y:mp_clear (&y); | |
281 LBL_X:mp_clear (&x); | |
282 LBL_T2:mp_clear (&t2); | |
283 LBL_T1:mp_clear (&t1); | |
284 LBL_Q:mp_clear (&q); | |
285 return res; | |
286 } | |
287 | |
288 #endif | |
289 | |
290 #endif | |
291 | |
292 /* $Source: /cvs/libtom/libtommath/bn_mp_div.c,v $ */ | |
293 /* $Revision: 1.3 $ */ | |
294 /* $Date: 2006/03/31 14:18:44 $ */ |