Mercurial > dropbear
comparison libtommath/bn_mp_gcd.c @ 389:5ff8218bcee9
propagate from branch 'au.asn.ucc.matt.ltm.dropbear' (head 2af95f00ebd5bb7a28b3817db1218442c935388e)
to branch 'au.asn.ucc.matt.dropbear' (head ecd779509ef23a8cdf64888904fc9b31d78aa933)
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Thu, 11 Jan 2007 03:14:55 +0000 |
parents | eed26cff980b |
children | 60fc6476e044 |
comparison
equal
deleted
inserted
replaced
388:fb54020f78e1 | 389:5ff8218bcee9 |
---|---|
1 #include <tommath.h> | |
2 #ifdef BN_MP_GCD_C | |
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
4 * | |
5 * LibTomMath is a library that provides multiple-precision | |
6 * integer arithmetic as well as number theoretic functionality. | |
7 * | |
8 * The library was designed directly after the MPI library by | |
9 * Michael Fromberger but has been written from scratch with | |
10 * additional optimizations in place. | |
11 * | |
12 * The library is free for all purposes without any express | |
13 * guarantee it works. | |
14 * | |
15 * Tom St Denis, [email protected], http://math.libtomcrypt.com | |
16 */ | |
17 | |
18 /* Greatest Common Divisor using the binary method */ | |
19 int mp_gcd (mp_int * a, mp_int * b, mp_int * c) | |
20 { | |
21 mp_int u, v; | |
22 int k, u_lsb, v_lsb, res; | |
23 | |
24 /* either zero than gcd is the largest */ | |
25 if (mp_iszero (a) == MP_YES) { | |
26 return mp_abs (b, c); | |
27 } | |
28 if (mp_iszero (b) == MP_YES) { | |
29 return mp_abs (a, c); | |
30 } | |
31 | |
32 /* get copies of a and b we can modify */ | |
33 if ((res = mp_init_copy (&u, a)) != MP_OKAY) { | |
34 return res; | |
35 } | |
36 | |
37 if ((res = mp_init_copy (&v, b)) != MP_OKAY) { | |
38 goto LBL_U; | |
39 } | |
40 | |
41 /* must be positive for the remainder of the algorithm */ | |
42 u.sign = v.sign = MP_ZPOS; | |
43 | |
44 /* B1. Find the common power of two for u and v */ | |
45 u_lsb = mp_cnt_lsb(&u); | |
46 v_lsb = mp_cnt_lsb(&v); | |
47 k = MIN(u_lsb, v_lsb); | |
48 | |
49 if (k > 0) { | |
50 /* divide the power of two out */ | |
51 if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) { | |
52 goto LBL_V; | |
53 } | |
54 | |
55 if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) { | |
56 goto LBL_V; | |
57 } | |
58 } | |
59 | |
60 /* divide any remaining factors of two out */ | |
61 if (u_lsb != k) { | |
62 if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) { | |
63 goto LBL_V; | |
64 } | |
65 } | |
66 | |
67 if (v_lsb != k) { | |
68 if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) { | |
69 goto LBL_V; | |
70 } | |
71 } | |
72 | |
73 while (mp_iszero(&v) == 0) { | |
74 /* make sure v is the largest */ | |
75 if (mp_cmp_mag(&u, &v) == MP_GT) { | |
76 /* swap u and v to make sure v is >= u */ | |
77 mp_exch(&u, &v); | |
78 } | |
79 | |
80 /* subtract smallest from largest */ | |
81 if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) { | |
82 goto LBL_V; | |
83 } | |
84 | |
85 /* Divide out all factors of two */ | |
86 if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) { | |
87 goto LBL_V; | |
88 } | |
89 } | |
90 | |
91 /* multiply by 2**k which we divided out at the beginning */ | |
92 if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) { | |
93 goto LBL_V; | |
94 } | |
95 c->sign = MP_ZPOS; | |
96 res = MP_OKAY; | |
97 LBL_V:mp_clear (&u); | |
98 LBL_U:mp_clear (&v); | |
99 return res; | |
100 } | |
101 #endif | |
102 | |
103 /* $Source: /cvs/libtom/libtommath/bn_mp_gcd.c,v $ */ | |
104 /* $Revision: 1.4 $ */ | |
105 /* $Date: 2006/03/31 14:18:44 $ */ |