Mercurial > dropbear
comparison libtommath/bn_mp_sqrtmod_prime.c @ 1436:60fc6476e044
Update to libtommath v1.0
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Sat, 24 Jun 2017 22:37:14 +0800 (2017-06-24) |
parents | |
children | f52919ffd3b1 |
comparison
equal
deleted
inserted
replaced
1435:f849a5ca2efc | 1436:60fc6476e044 |
---|---|
1 #include <tommath_private.h> | |
2 #ifdef BN_MP_SQRTMOD_PRIME_C | |
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
4 * | |
5 * LibTomMath is a library that provides multiple-precision | |
6 * integer arithmetic as well as number theoretic functionality. | |
7 * | |
8 * The library is free for all purposes without any express | |
9 * guarantee it works. | |
10 */ | |
11 | |
12 /* Tonelli-Shanks algorithm | |
13 * https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm | |
14 * https://gmplib.org/list-archives/gmp-discuss/2013-April/005300.html | |
15 * | |
16 */ | |
17 | |
18 int mp_sqrtmod_prime(mp_int *n, mp_int *prime, mp_int *ret) | |
19 { | |
20 int res, legendre; | |
21 mp_int t1, C, Q, S, Z, M, T, R, two; | |
22 mp_digit i; | |
23 | |
24 /* first handle the simple cases */ | |
25 if (mp_cmp_d(n, 0) == MP_EQ) { | |
26 mp_zero(ret); | |
27 return MP_OKAY; | |
28 } | |
29 if (mp_cmp_d(prime, 2) == MP_EQ) return MP_VAL; /* prime must be odd */ | |
30 if ((res = mp_jacobi(n, prime, &legendre)) != MP_OKAY) return res; | |
31 if (legendre == -1) return MP_VAL; /* quadratic non-residue mod prime */ | |
32 | |
33 if ((res = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) { | |
34 return res; | |
35 } | |
36 | |
37 /* SPECIAL CASE: if prime mod 4 == 3 | |
38 * compute directly: res = n^(prime+1)/4 mod prime | |
39 * Handbook of Applied Cryptography algorithm 3.36 | |
40 */ | |
41 if ((res = mp_mod_d(prime, 4, &i)) != MP_OKAY) goto cleanup; | |
42 if (i == 3) { | |
43 if ((res = mp_add_d(prime, 1, &t1)) != MP_OKAY) goto cleanup; | |
44 if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; | |
45 if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; | |
46 if ((res = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY) goto cleanup; | |
47 res = MP_OKAY; | |
48 goto cleanup; | |
49 } | |
50 | |
51 /* NOW: Tonelli-Shanks algorithm */ | |
52 | |
53 /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */ | |
54 if ((res = mp_copy(prime, &Q)) != MP_OKAY) goto cleanup; | |
55 if ((res = mp_sub_d(&Q, 1, &Q)) != MP_OKAY) goto cleanup; | |
56 /* Q = prime - 1 */ | |
57 mp_zero(&S); | |
58 /* S = 0 */ | |
59 while (mp_iseven(&Q) != MP_NO) { | |
60 if ((res = mp_div_2(&Q, &Q)) != MP_OKAY) goto cleanup; | |
61 /* Q = Q / 2 */ | |
62 if ((res = mp_add_d(&S, 1, &S)) != MP_OKAY) goto cleanup; | |
63 /* S = S + 1 */ | |
64 } | |
65 | |
66 /* find a Z such that the Legendre symbol (Z|prime) == -1 */ | |
67 if ((res = mp_set_int(&Z, 2)) != MP_OKAY) goto cleanup; | |
68 /* Z = 2 */ | |
69 while(1) { | |
70 if ((res = mp_jacobi(&Z, prime, &legendre)) != MP_OKAY) goto cleanup; | |
71 if (legendre == -1) break; | |
72 if ((res = mp_add_d(&Z, 1, &Z)) != MP_OKAY) goto cleanup; | |
73 /* Z = Z + 1 */ | |
74 } | |
75 | |
76 if ((res = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY) goto cleanup; | |
77 /* C = Z ^ Q mod prime */ | |
78 if ((res = mp_add_d(&Q, 1, &t1)) != MP_OKAY) goto cleanup; | |
79 if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; | |
80 /* t1 = (Q + 1) / 2 */ | |
81 if ((res = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY) goto cleanup; | |
82 /* R = n ^ ((Q + 1) / 2) mod prime */ | |
83 if ((res = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY) goto cleanup; | |
84 /* T = n ^ Q mod prime */ | |
85 if ((res = mp_copy(&S, &M)) != MP_OKAY) goto cleanup; | |
86 /* M = S */ | |
87 if ((res = mp_set_int(&two, 2)) != MP_OKAY) goto cleanup; | |
88 | |
89 res = MP_VAL; | |
90 while (1) { | |
91 if ((res = mp_copy(&T, &t1)) != MP_OKAY) goto cleanup; | |
92 i = 0; | |
93 while (1) { | |
94 if (mp_cmp_d(&t1, 1) == MP_EQ) break; | |
95 if ((res = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup; | |
96 i++; | |
97 } | |
98 if (i == 0) { | |
99 if ((res = mp_copy(&R, ret)) != MP_OKAY) goto cleanup; | |
100 res = MP_OKAY; | |
101 goto cleanup; | |
102 } | |
103 if ((res = mp_sub_d(&M, i, &t1)) != MP_OKAY) goto cleanup; | |
104 if ((res = mp_sub_d(&t1, 1, &t1)) != MP_OKAY) goto cleanup; | |
105 if ((res = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY) goto cleanup; | |
106 /* t1 = 2 ^ (M - i - 1) */ | |
107 if ((res = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY) goto cleanup; | |
108 /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */ | |
109 if ((res = mp_sqrmod(&t1, prime, &C)) != MP_OKAY) goto cleanup; | |
110 /* C = (t1 * t1) mod prime */ | |
111 if ((res = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY) goto cleanup; | |
112 /* R = (R * t1) mod prime */ | |
113 if ((res = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY) goto cleanup; | |
114 /* T = (T * C) mod prime */ | |
115 mp_set(&M, i); | |
116 /* M = i */ | |
117 } | |
118 | |
119 cleanup: | |
120 mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL); | |
121 return res; | |
122 } | |
123 | |
124 #endif |