comparison libtomcrypt/src/pk/dsa/dsa_generate_pqg.c @ 1471:6dba84798cd5

Update to libtomcrypt 1.18.1, merged with Dropbear changes
author Matt Johnston <matt@ucc.asn.au>
date Fri, 09 Feb 2018 21:44:05 +0800
parents
children e9dba7abd939
comparison
equal deleted inserted replaced
1470:8bba51a55704 1471:6dba84798cd5
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
2 *
3 * LibTomCrypt is a library that provides various cryptographic
4 * algorithms in a highly modular and flexible manner.
5 *
6 * The library is free for all purposes without any express
7 * guarantee it works.
8 */
9 #include "tomcrypt.h"
10
11 /**
12 @file dsa_generate_pqg.c
13 DSA implementation - generate DSA parameters p, q & g
14 */
15
16 #ifdef LTC_MDSA
17
18 /**
19 Create DSA parameters (INTERNAL ONLY, not part of public API)
20 @param prng An active PRNG state
21 @param wprng The index of the PRNG desired
22 @param group_size Size of the multiplicative group (octets)
23 @param modulus_size Size of the modulus (octets)
24 @param p [out] bignum where generated 'p' is stored (must be initialized by caller)
25 @param q [out] bignum where generated 'q' is stored (must be initialized by caller)
26 @param g [out] bignum where generated 'g' is stored (must be initialized by caller)
27 @return CRYPT_OK if successful, upon error this function will free all allocated memory
28 */
29 static int _dsa_make_params(prng_state *prng, int wprng, int group_size, int modulus_size, void *p, void *q, void *g)
30 {
31 unsigned long L, N, n, outbytes, seedbytes, counter, j, i;
32 int err, res, mr_tests_q, mr_tests_p, found_p, found_q, hash;
33 unsigned char *wbuf, *sbuf, digest[MAXBLOCKSIZE];
34 void *t2L1, *t2N1, *t2q, *t2seedlen, *U, *W, *X, *c, *h, *e, *seedinc;
35
36 /* check size */
37 if (group_size >= LTC_MDSA_MAX_GROUP || group_size < 1 || group_size >= modulus_size) {
38 return CRYPT_INVALID_ARG;
39 }
40
41 /* FIPS-186-4 A.1.1.2 Generation of the Probable Primes p and q Using an Approved Hash Function
42 *
43 * L = The desired length of the prime p (in bits e.g. L = 1024)
44 * N = The desired length of the prime q (in bits e.g. N = 160)
45 * seedlen = The desired bit length of the domain parameter seed; seedlen shallbe equal to or greater than N
46 * outlen = The bit length of Hash function
47 *
48 * 1. Check that the (L, N)
49 * 2. If (seedlen <N), then return INVALID.
50 * 3. n = ceil(L / outlen) - 1
51 * 4. b = L- 1 - (n * outlen)
52 * 5. domain_parameter_seed = an arbitrary sequence of seedlen bits
53 * 6. U = Hash (domain_parameter_seed) mod 2^(N-1)
54 * 7. q = 2^(N-1) + U + 1 - (U mod 2)
55 * 8. Test whether or not q is prime as specified in Appendix C.3
56 * 9. If qis not a prime, then go to step 5.
57 * 10. offset = 1
58 * 11. For counter = 0 to (4L- 1) do {
59 * For j=0 to n do {
60 * Vj = Hash ((domain_parameter_seed+ offset + j) mod 2^seedlen
61 * }
62 * W = V0 + (V1 *2^outlen) + ... + (Vn-1 * 2^((n-1) * outlen)) + ((Vn mod 2^b) * 2^(n * outlen))
63 * X = W + 2^(L-1) Comment: 0 <= W < 2^(L-1); hence 2^(L-1) <= X < 2^L
64 * c = X mod 2*q
65 * p = X - (c - 1) Comment: p ~ 1 (mod 2*q)
66 * If (p >= 2^(L-1)) {
67 * Test whether or not p is prime as specified in Appendix C.3.
68 * If p is determined to be prime, then return VALID and the values of p, qand (optionally) the values of domain_parameter_seed and counter
69 * }
70 * offset = offset + n + 1 Comment: Increment offset
71 * }
72 */
73
74 seedbytes = group_size;
75 L = modulus_size * 8;
76 N = group_size * 8;
77
78 /* XXX-TODO no Lucas test */
79 #ifdef LTC_MPI_HAS_LUCAS_TEST
80 /* M-R tests (when followed by one Lucas test) according FIPS-186-4 - Appendix C.3 - table C.1 */
81 mr_tests_p = (L <= 2048) ? 3 : 2;
82 if (N <= 160) { mr_tests_q = 19; }
83 else if (N <= 224) { mr_tests_q = 24; }
84 else { mr_tests_q = 27; }
85 #else
86 /* M-R tests (without Lucas test) according FIPS-186-4 - Appendix C.3 - table C.1 */
87 if (L <= 1024) { mr_tests_p = 40; }
88 else if (L <= 2048) { mr_tests_p = 56; }
89 else { mr_tests_p = 64; }
90
91 if (N <= 160) { mr_tests_q = 40; }
92 else if (N <= 224) { mr_tests_q = 56; }
93 else { mr_tests_q = 64; }
94 #endif
95
96 if (N <= 256) {
97 hash = register_hash(&sha256_desc);
98 }
99 else if (N <= 384) {
100 hash = register_hash(&sha384_desc);
101 }
102 else if (N <= 512) {
103 hash = register_hash(&sha512_desc);
104 }
105 else {
106 return CRYPT_INVALID_ARG; /* group_size too big */
107 }
108
109 if ((err = hash_is_valid(hash)) != CRYPT_OK) { return err; }
110 outbytes = hash_descriptor[hash].hashsize;
111
112 n = ((L + outbytes*8 - 1) / (outbytes*8)) - 1;
113
114 if ((wbuf = XMALLOC((n+1)*outbytes)) == NULL) { err = CRYPT_MEM; goto cleanup3; }
115 if ((sbuf = XMALLOC(seedbytes)) == NULL) { err = CRYPT_MEM; goto cleanup2; }
116
117 err = mp_init_multi(&t2L1, &t2N1, &t2q, &t2seedlen, &U, &W, &X, &c, &h, &e, &seedinc, NULL);
118 if (err != CRYPT_OK) { goto cleanup1; }
119
120 if ((err = mp_2expt(t2L1, L-1)) != CRYPT_OK) { goto cleanup; }
121 /* t2L1 = 2^(L-1) */
122 if ((err = mp_2expt(t2N1, N-1)) != CRYPT_OK) { goto cleanup; }
123 /* t2N1 = 2^(N-1) */
124 if ((err = mp_2expt(t2seedlen, seedbytes*8)) != CRYPT_OK) { goto cleanup; }
125 /* t2seedlen = 2^seedlen */
126
127 for(found_p=0; !found_p;) {
128 /* q */
129 for(found_q=0; !found_q;) {
130 if (prng_descriptor[wprng].read(sbuf, seedbytes, prng) != seedbytes) { err = CRYPT_ERROR_READPRNG; goto cleanup; }
131 i = outbytes;
132 if ((err = hash_memory(hash, sbuf, seedbytes, digest, &i)) != CRYPT_OK) { goto cleanup; }
133 if ((err = mp_read_unsigned_bin(U, digest, outbytes)) != CRYPT_OK) { goto cleanup; }
134 if ((err = mp_mod(U, t2N1, U)) != CRYPT_OK) { goto cleanup; }
135 if ((err = mp_add(t2N1, U, q)) != CRYPT_OK) { goto cleanup; }
136 if (!mp_isodd(q)) mp_add_d(q, 1, q);
137 if ((err = mp_prime_is_prime(q, mr_tests_q, &res)) != CRYPT_OK) { goto cleanup; }
138 if (res == LTC_MP_YES) found_q = 1;
139 }
140
141 /* p */
142 if ((err = mp_read_unsigned_bin(seedinc, sbuf, seedbytes)) != CRYPT_OK) { goto cleanup; }
143 if ((err = mp_add(q, q, t2q)) != CRYPT_OK) { goto cleanup; }
144 for(counter=0; counter < 4*L && !found_p; counter++) {
145 for(j=0; j<=n; j++) {
146 if ((err = mp_add_d(seedinc, 1, seedinc)) != CRYPT_OK) { goto cleanup; }
147 if ((err = mp_mod(seedinc, t2seedlen, seedinc)) != CRYPT_OK) { goto cleanup; }
148 /* seedinc = (seedinc+1) % 2^seed_bitlen */
149 if ((i = mp_unsigned_bin_size(seedinc)) > seedbytes) { err = CRYPT_INVALID_ARG; goto cleanup; }
150 zeromem(sbuf, seedbytes);
151 if ((err = mp_to_unsigned_bin(seedinc, sbuf + seedbytes-i)) != CRYPT_OK) { goto cleanup; }
152 i = outbytes;
153 err = hash_memory(hash, sbuf, seedbytes, wbuf+(n-j)*outbytes, &i);
154 if (err != CRYPT_OK) { goto cleanup; }
155 }
156 if ((err = mp_read_unsigned_bin(W, wbuf, (n+1)*outbytes)) != CRYPT_OK) { goto cleanup; }
157 if ((err = mp_mod(W, t2L1, W)) != CRYPT_OK) { goto cleanup; }
158 if ((err = mp_add(W, t2L1, X)) != CRYPT_OK) { goto cleanup; }
159 if ((err = mp_mod(X, t2q, c)) != CRYPT_OK) { goto cleanup; }
160 if ((err = mp_sub_d(c, 1, p)) != CRYPT_OK) { goto cleanup; }
161 if ((err = mp_sub(X, p, p)) != CRYPT_OK) { goto cleanup; }
162 if (mp_cmp(p, t2L1) != LTC_MP_LT) {
163 /* p >= 2^(L-1) */
164 if ((err = mp_prime_is_prime(p, mr_tests_p, &res)) != CRYPT_OK) { goto cleanup; }
165 if (res == LTC_MP_YES) {
166 found_p = 1;
167 }
168 }
169 }
170 }
171
172 /* FIPS-186-4 A.2.1 Unverifiable Generation of the Generator g
173 * 1. e = (p - 1)/q
174 * 2. h = any integer satisfying: 1 < h < (p - 1)
175 * h could be obtained from a random number generator or from a counter that changes after each use
176 * 3. g = h^e mod p
177 * 4. if (g == 1), then go to step 2.
178 *
179 */
180
181 if ((err = mp_sub_d(p, 1, e)) != CRYPT_OK) { goto cleanup; }
182 if ((err = mp_div(e, q, e, c)) != CRYPT_OK) { goto cleanup; }
183 /* e = (p - 1)/q */
184 i = mp_count_bits(p);
185 do {
186 do {
187 if ((err = rand_bn_bits(h, i, prng, wprng)) != CRYPT_OK) { goto cleanup; }
188 } while (mp_cmp(h, p) != LTC_MP_LT || mp_cmp_d(h, 2) != LTC_MP_GT);
189 if ((err = mp_sub_d(h, 1, h)) != CRYPT_OK) { goto cleanup; }
190 /* h is randon and 1 < h < (p-1) */
191 if ((err = mp_exptmod(h, e, p, g)) != CRYPT_OK) { goto cleanup; }
192 } while (mp_cmp_d(g, 1) == LTC_MP_EQ);
193
194 err = CRYPT_OK;
195 cleanup:
196 mp_clear_multi(t2L1, t2N1, t2q, t2seedlen, U, W, X, c, h, e, seedinc, NULL);
197 cleanup1:
198 XFREE(sbuf);
199 cleanup2:
200 XFREE(wbuf);
201 cleanup3:
202 return err;
203 }
204
205 /**
206 Generate DSA parameters p, q & g
207 @param prng An active PRNG state
208 @param wprng The index of the PRNG desired
209 @param group_size Size of the multiplicative group (octets)
210 @param modulus_size Size of the modulus (octets)
211 @param key [out] Where to store the created key
212 @return CRYPT_OK if successful.
213 */
214 int dsa_generate_pqg(prng_state *prng, int wprng, int group_size, int modulus_size, dsa_key *key)
215 {
216 int err;
217
218 LTC_ARGCHK(key != NULL);
219 LTC_ARGCHK(ltc_mp.name != NULL);
220
221 /* init mp_ints */
222 if ((err = mp_init_multi(&key->p, &key->g, &key->q, &key->x, &key->y, NULL)) != CRYPT_OK) {
223 return err;
224 }
225 /* generate params */
226 err = _dsa_make_params(prng, wprng, group_size, modulus_size, key->p, key->q, key->g);
227 if (err != CRYPT_OK) {
228 goto cleanup;
229 }
230
231 key->qord = group_size;
232
233 return CRYPT_OK;
234
235 cleanup:
236 dsa_free(key);
237 return err;
238 }
239
240 #endif
241
242 /* ref: $Format:%D$ */
243 /* git commit: $Format:%H$ */
244 /* commit time: $Format:%ai$ */