Mercurial > dropbear
comparison libtomcrypt/src/pk/dsa/dsa_make_key.c @ 1471:6dba84798cd5
Update to libtomcrypt 1.18.1, merged with Dropbear changes
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Fri, 09 Feb 2018 21:44:05 +0800 |
parents | f849a5ca2efc |
children |
comparison
equal
deleted
inserted
replaced
1470:8bba51a55704 | 1471:6dba84798cd5 |
---|---|
3 * LibTomCrypt is a library that provides various cryptographic | 3 * LibTomCrypt is a library that provides various cryptographic |
4 * algorithms in a highly modular and flexible manner. | 4 * algorithms in a highly modular and flexible manner. |
5 * | 5 * |
6 * The library is free for all purposes without any express | 6 * The library is free for all purposes without any express |
7 * guarantee it works. | 7 * guarantee it works. |
8 * | |
9 * Tom St Denis, [email protected], http://libtom.org | |
10 */ | 8 */ |
11 #include "tomcrypt.h" | 9 #include "tomcrypt.h" |
12 | 10 |
13 /** | 11 /** |
14 @file dsa_make_key.c | 12 @file dsa_make_key.c |
15 DSA implementation, generate a DSA key, Tom St Denis | 13 DSA implementation, generate a DSA key |
16 */ | 14 */ |
17 | 15 |
18 #ifdef LTC_MDSA | 16 #ifdef LTC_MDSA |
19 | 17 |
20 /** | 18 /** |
21 Create a DSA key | 19 Old-style creation of a DSA key |
22 @param prng An active PRNG state | 20 @param prng An active PRNG state |
23 @param wprng The index of the PRNG desired | 21 @param wprng The index of the PRNG desired |
24 @param group_size Size of the multiplicative group (octets) | 22 @param group_size Size of the multiplicative group (octets) |
25 @param modulus_size Size of the modulus (octets) | 23 @param modulus_size Size of the modulus (octets) |
26 @param key [out] Where to store the created key | 24 @param key [out] Where to store the created key |
27 @return CRYPT_OK if successful, upon error this function will free all allocated memory | 25 @return CRYPT_OK if successful. |
28 */ | 26 */ |
29 int dsa_make_key(prng_state *prng, int wprng, int group_size, int modulus_size, dsa_key *key) | 27 int dsa_make_key(prng_state *prng, int wprng, int group_size, int modulus_size, dsa_key *key) |
30 { | 28 { |
31 void *tmp, *tmp2; | 29 int err; |
32 int err, res; | |
33 unsigned char *buf; | |
34 | 30 |
35 LTC_ARGCHK(key != NULL); | 31 if ((err = dsa_generate_pqg(prng, wprng, group_size, modulus_size, key)) != CRYPT_OK) { return err; } |
36 LTC_ARGCHK(ltc_mp.name != NULL); | 32 if ((err = dsa_generate_key(prng, wprng, key)) != CRYPT_OK) { return err; } |
37 | 33 |
38 /* check prng */ | 34 return CRYPT_OK; |
39 if ((err = prng_is_valid(wprng)) != CRYPT_OK) { | |
40 return err; | |
41 } | |
42 | |
43 /* check size */ | |
44 if (group_size >= LTC_MDSA_MAX_GROUP || group_size <= 15 || | |
45 group_size >= modulus_size || (modulus_size - group_size) >= LTC_MDSA_DELTA) { | |
46 return CRYPT_INVALID_ARG; | |
47 } | |
48 | |
49 /* allocate ram */ | |
50 buf = XMALLOC(LTC_MDSA_DELTA); | |
51 if (buf == NULL) { | |
52 return CRYPT_MEM; | |
53 } | |
54 | |
55 /* init mp_ints */ | |
56 if ((err = mp_init_multi(&tmp, &tmp2, &key->g, &key->q, &key->p, &key->x, &key->y, NULL)) != CRYPT_OK) { | |
57 XFREE(buf); | |
58 return err; | |
59 } | |
60 | |
61 /* make our prime q */ | |
62 if ((err = rand_prime(key->q, group_size, prng, wprng)) != CRYPT_OK) { goto error; } | |
63 | |
64 /* double q */ | |
65 if ((err = mp_add(key->q, key->q, tmp)) != CRYPT_OK) { goto error; } | |
66 | |
67 /* now make a random string and multply it against q */ | |
68 if (prng_descriptor[wprng].read(buf+1, modulus_size - group_size, prng) != (unsigned long)(modulus_size - group_size)) { | |
69 err = CRYPT_ERROR_READPRNG; | |
70 goto error; | |
71 } | |
72 | |
73 /* force magnitude */ | |
74 buf[0] |= 0xC0; | |
75 | |
76 /* force even */ | |
77 buf[modulus_size - group_size - 1] &= ~1; | |
78 | |
79 if ((err = mp_read_unsigned_bin(tmp2, buf, modulus_size - group_size)) != CRYPT_OK) { goto error; } | |
80 if ((err = mp_mul(key->q, tmp2, key->p)) != CRYPT_OK) { goto error; } | |
81 if ((err = mp_add_d(key->p, 1, key->p)) != CRYPT_OK) { goto error; } | |
82 | |
83 /* now loop until p is prime */ | |
84 for (;;) { | |
85 if ((err = mp_prime_is_prime(key->p, 8, &res)) != CRYPT_OK) { goto error; } | |
86 if (res == LTC_MP_YES) break; | |
87 | |
88 /* add 2q to p and 2 to tmp2 */ | |
89 if ((err = mp_add(tmp, key->p, key->p)) != CRYPT_OK) { goto error; } | |
90 if ((err = mp_add_d(tmp2, 2, tmp2)) != CRYPT_OK) { goto error; } | |
91 } | |
92 | |
93 /* now p = (q * tmp2) + 1 is prime, find a value g for which g^tmp2 != 1 */ | |
94 mp_set(key->g, 1); | |
95 | |
96 do { | |
97 if ((err = mp_add_d(key->g, 1, key->g)) != CRYPT_OK) { goto error; } | |
98 if ((err = mp_exptmod(key->g, tmp2, key->p, tmp)) != CRYPT_OK) { goto error; } | |
99 } while (mp_cmp_d(tmp, 1) == LTC_MP_EQ); | |
100 | |
101 /* at this point tmp generates a group of order q mod p */ | |
102 mp_exch(tmp, key->g); | |
103 | |
104 /* so now we have our DH structure, generator g, order q, modulus p | |
105 Now we need a random exponent [mod q] and it's power g^x mod p | |
106 */ | |
107 do { | |
108 if (prng_descriptor[wprng].read(buf, group_size, prng) != (unsigned long)group_size) { | |
109 err = CRYPT_ERROR_READPRNG; | |
110 goto error; | |
111 } | |
112 if ((err = mp_read_unsigned_bin(key->x, buf, group_size)) != CRYPT_OK) { goto error; } | |
113 } while (mp_cmp_d(key->x, 1) != LTC_MP_GT); | |
114 if ((err = mp_exptmod(key->g, key->x, key->p, key->y)) != CRYPT_OK) { goto error; } | |
115 | |
116 key->type = PK_PRIVATE; | |
117 key->qord = group_size; | |
118 | |
119 #ifdef LTC_CLEAN_STACK | |
120 zeromem(buf, LTC_MDSA_DELTA); | |
121 #endif | |
122 | |
123 err = CRYPT_OK; | |
124 goto done; | |
125 error: | |
126 mp_clear_multi(key->g, key->q, key->p, key->x, key->y, NULL); | |
127 done: | |
128 mp_clear_multi(tmp, tmp2, NULL); | |
129 XFREE(buf); | |
130 return err; | |
131 } | 35 } |
132 | 36 |
133 #endif | 37 #endif |
134 | 38 |
135 /* $Source$ */ | 39 /* ref: $Format:%D$ */ |
136 /* $Revision$ */ | 40 /* git commit: $Format:%H$ */ |
137 /* $Date$ */ | 41 /* commit time: $Format:%ai$ */ |