Mercurial > dropbear
comparison rc2.c @ 3:7faae8f46238 libtomcrypt-orig
Branch renaming
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 31 May 2004 18:25:41 +0000 |
parents | |
children | 5d99163f7e32 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 3:7faae8f46238 |
---|---|
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis | |
2 * | |
3 * LibTomCrypt is a library that provides various cryptographic | |
4 * algorithms in a highly modular and flexible manner. | |
5 * | |
6 * The library is free for all purposes without any express | |
7 * guarantee it works. | |
8 * | |
9 * Tom St Denis, [email protected], http://libtomcrypt.org | |
10 */ | |
11 /**********************************************************************\ | |
12 * To commemorate the 1996 RSA Data Security Conference, the following * | |
13 * code is released into the public domain by its author. Prost! * | |
14 * * | |
15 * This cipher uses 16-bit words and little-endian byte ordering. * | |
16 * I wonder which processor it was optimized for? * | |
17 * * | |
18 * Thanks to CodeView, SoftIce, and D86 for helping bring this code to * | |
19 * the public. * | |
20 \**********************************************************************/ | |
21 | |
22 #include <mycrypt.h> | |
23 | |
24 #ifdef RC2 | |
25 | |
26 const struct _cipher_descriptor rc2_desc = { | |
27 "rc2", | |
28 12, 8, 128, 8, 16, | |
29 &rc2_setup, | |
30 &rc2_ecb_encrypt, | |
31 &rc2_ecb_decrypt, | |
32 &rc2_test, | |
33 &rc2_keysize | |
34 }; | |
35 | |
36 | |
37 /**********************************************************************\ | |
38 * Expand a variable-length user key (between 1 and 128 bytes) to a * | |
39 * 64-short working rc2 key, of at most "bits" effective key bits. * | |
40 * The effective key bits parameter looks like an export control hack. * | |
41 * For normal use, it should always be set to 1024. For convenience, * | |
42 * zero is accepted as an alias for 1024. * | |
43 \**********************************************************************/ | |
44 | |
45 /* 256-entry permutation table, probably derived somehow from pi */ | |
46 static const unsigned char permute[256] = { | |
47 217,120,249,196, 25,221,181,237, 40,233,253,121, 74,160,216,157, | |
48 198,126, 55,131, 43,118, 83,142, 98, 76,100,136, 68,139,251,162, | |
49 23,154, 89,245,135,179, 79, 19, 97, 69,109,141, 9,129,125, 50, | |
50 189,143, 64,235,134,183,123, 11,240,149, 33, 34, 92,107, 78,130, | |
51 84,214,101,147,206, 96,178, 28,115, 86,192, 20,167,140,241,220, | |
52 18,117,202, 31, 59,190,228,209, 66, 61,212, 48,163, 60,182, 38, | |
53 111,191, 14,218, 70,105, 7, 87, 39,242, 29,155,188,148, 67, 3, | |
54 248, 17,199,246,144,239, 62,231, 6,195,213, 47,200,102, 30,215, | |
55 8,232,234,222,128, 82,238,247,132,170,114,172, 53, 77,106, 42, | |
56 150, 26,210,113, 90, 21, 73,116, 75,159,208, 94, 4, 24,164,236, | |
57 194,224, 65,110, 15, 81,203,204, 36,145,175, 80,161,244,112, 57, | |
58 153,124, 58,133, 35,184,180,122,252, 2, 54, 91, 37, 85,151, 49, | |
59 45, 93,250,152,227,138,146,174, 5,223, 41, 16,103,108,186,201, | |
60 211, 0,230,207,225,158,168, 44, 99, 22, 1, 63, 88,226,137,169, | |
61 13, 56, 52, 27,171, 51,255,176,187, 72, 12, 95,185,177,205, 46, | |
62 197,243,219, 71,229,165,156,119, 10,166, 32,104,254,127,193,173 | |
63 }; | |
64 | |
65 int rc2_setup(const unsigned char *key, int keylen, int rounds, symmetric_key *skey) | |
66 { | |
67 unsigned *xkey = skey->rc2.xkey; | |
68 unsigned char tmp[128]; | |
69 unsigned T8, TM; | |
70 int i, bits; | |
71 | |
72 _ARGCHK(key != NULL); | |
73 _ARGCHK(skey != NULL); | |
74 | |
75 if (keylen < 8 || keylen > 128) { | |
76 return CRYPT_INVALID_KEYSIZE; | |
77 } | |
78 | |
79 if (rounds != 0 && rounds != 16) { | |
80 return CRYPT_INVALID_ROUNDS; | |
81 } | |
82 | |
83 for (i = 0; i < keylen; i++) { | |
84 tmp[i] = key[i] & 255; | |
85 } | |
86 | |
87 /* Phase 1: Expand input key to 128 bytes */ | |
88 if (keylen < 128) { | |
89 for (i = keylen; i < 128; i++) { | |
90 tmp[i] = permute[(int)((tmp[i - 1] + tmp[i - keylen]) & 255)]; | |
91 } | |
92 } | |
93 | |
94 /* Phase 2 - reduce effective key size to "bits" */ | |
95 bits = keylen*8; | |
96 T8 = (unsigned)(bits+7)>>3; | |
97 TM = (255 >> (unsigned)(7 & -bits)); | |
98 tmp[128 - T8] = permute[(int)(tmp[128 - T8] & TM)]; | |
99 for (i = 127 - T8; i >= 0; i--) { | |
100 tmp[i] = permute[(int)(tmp[i + 1] ^ tmp[i + T8])]; | |
101 } | |
102 | |
103 /* Phase 3 - copy to xkey in little-endian order */ | |
104 i = 63; | |
105 do { | |
106 xkey[i] = (unsigned)tmp[2*i] + ((unsigned)tmp[2*i+1] << 8); | |
107 } while (i-- > 0); | |
108 | |
109 #ifdef CLEAN_STACK | |
110 zeromem(tmp, sizeof(tmp)); | |
111 #endif | |
112 | |
113 return CRYPT_OK; | |
114 } | |
115 | |
116 /**********************************************************************\ | |
117 * Encrypt an 8-byte block of plaintext using the given key. * | |
118 \**********************************************************************/ | |
119 #ifdef CLEAN_STACK | |
120 static void _rc2_ecb_encrypt( const unsigned char *plain, | |
121 unsigned char *cipher, | |
122 symmetric_key *skey) | |
123 #else | |
124 void rc2_ecb_encrypt( const unsigned char *plain, | |
125 unsigned char *cipher, | |
126 symmetric_key *skey) | |
127 #endif | |
128 { | |
129 unsigned *xkey; | |
130 unsigned x76, x54, x32, x10, i; | |
131 | |
132 _ARGCHK(plain != NULL); | |
133 _ARGCHK(cipher != NULL); | |
134 _ARGCHK(skey != NULL); | |
135 | |
136 xkey = skey->rc2.xkey; | |
137 | |
138 x76 = ((unsigned)plain[7] << 8) + (unsigned)plain[6]; | |
139 x54 = ((unsigned)plain[5] << 8) + (unsigned)plain[4]; | |
140 x32 = ((unsigned)plain[3] << 8) + (unsigned)plain[2]; | |
141 x10 = ((unsigned)plain[1] << 8) + (unsigned)plain[0]; | |
142 | |
143 for (i = 0; i < 16; i++) { | |
144 x10 = (x10 + (x32 & ~x76) + (x54 & x76) + xkey[4*i+0]) & 0xFFFF; | |
145 x10 = ((x10 << 1) | (x10 >> 15)) & 0xFFFF; | |
146 | |
147 x32 = (x32 + (x54 & ~x10) + (x76 & x10) + xkey[4*i+1]) & 0xFFFF; | |
148 x32 = ((x32 << 2) | (x32 >> 14)) & 0xFFFF; | |
149 | |
150 x54 = (x54 + (x76 & ~x32) + (x10 & x32) + xkey[4*i+2]) & 0xFFFF; | |
151 x54 = ((x54 << 3) | (x54 >> 13)) & 0xFFFF; | |
152 | |
153 x76 = (x76 + (x10 & ~x54) + (x32 & x54) + xkey[4*i+3]) & 0xFFFF; | |
154 x76 = ((x76 << 5) | (x76 >> 11)) & 0xFFFF; | |
155 | |
156 if (i == 4 || i == 10) { | |
157 x10 = (x10 + xkey[x76 & 63]) & 0xFFFF; | |
158 x32 = (x32 + xkey[x10 & 63]) & 0xFFFF; | |
159 x54 = (x54 + xkey[x32 & 63]) & 0xFFFF; | |
160 x76 = (x76 + xkey[x54 & 63]) & 0xFFFF; | |
161 } | |
162 } | |
163 | |
164 cipher[0] = (unsigned char)x10; | |
165 cipher[1] = (unsigned char)(x10 >> 8); | |
166 cipher[2] = (unsigned char)x32; | |
167 cipher[3] = (unsigned char)(x32 >> 8); | |
168 cipher[4] = (unsigned char)x54; | |
169 cipher[5] = (unsigned char)(x54 >> 8); | |
170 cipher[6] = (unsigned char)x76; | |
171 cipher[7] = (unsigned char)(x76 >> 8); | |
172 } | |
173 | |
174 #ifdef CLEAN_STACK | |
175 void rc2_ecb_encrypt( const unsigned char *plain, | |
176 unsigned char *cipher, | |
177 symmetric_key *skey) | |
178 { | |
179 _rc2_ecb_encrypt(plain, cipher, skey); | |
180 burn_stack(sizeof(unsigned *) + sizeof(unsigned) * 5); | |
181 } | |
182 #endif | |
183 | |
184 /**********************************************************************\ | |
185 * Decrypt an 8-byte block of ciphertext using the given key. * | |
186 \**********************************************************************/ | |
187 | |
188 #ifdef CLEAN_STACK | |
189 static void _rc2_ecb_decrypt( const unsigned char *cipher, | |
190 unsigned char *plain, | |
191 symmetric_key *skey) | |
192 #else | |
193 void rc2_ecb_decrypt( const unsigned char *cipher, | |
194 unsigned char *plain, | |
195 symmetric_key *skey) | |
196 #endif | |
197 { | |
198 unsigned x76, x54, x32, x10; | |
199 unsigned *xkey; | |
200 int i; | |
201 | |
202 _ARGCHK(plain != NULL); | |
203 _ARGCHK(cipher != NULL); | |
204 _ARGCHK(skey != NULL); | |
205 | |
206 xkey = skey->rc2.xkey; | |
207 | |
208 x76 = ((unsigned)cipher[7] << 8) + (unsigned)cipher[6]; | |
209 x54 = ((unsigned)cipher[5] << 8) + (unsigned)cipher[4]; | |
210 x32 = ((unsigned)cipher[3] << 8) + (unsigned)cipher[2]; | |
211 x10 = ((unsigned)cipher[1] << 8) + (unsigned)cipher[0]; | |
212 | |
213 for (i = 15; i >= 0; i--) { | |
214 if (i == 4 || i == 10) { | |
215 x76 = (x76 - xkey[x54 & 63]) & 0xFFFF; | |
216 x54 = (x54 - xkey[x32 & 63]) & 0xFFFF; | |
217 x32 = (x32 - xkey[x10 & 63]) & 0xFFFF; | |
218 x10 = (x10 - xkey[x76 & 63]) & 0xFFFF; | |
219 } | |
220 | |
221 x76 = ((x76 << 11) | (x76 >> 5)) & 0xFFFF; | |
222 x76 = (x76 - ((x10 & ~x54) + (x32 & x54) + xkey[4*i+3])) & 0xFFFF; | |
223 | |
224 x54 = ((x54 << 13) | (x54 >> 3)) & 0xFFFF; | |
225 x54 = (x54 - ((x76 & ~x32) + (x10 & x32) + xkey[4*i+2])) & 0xFFFF; | |
226 | |
227 x32 = ((x32 << 14) | (x32 >> 2)) & 0xFFFF; | |
228 x32 = (x32 - ((x54 & ~x10) + (x76 & x10) + xkey[4*i+1])) & 0xFFFF; | |
229 | |
230 x10 = ((x10 << 15) | (x10 >> 1)) & 0xFFFF; | |
231 x10 = (x10 - ((x32 & ~x76) + (x54 & x76) + xkey[4*i+0])) & 0xFFFF; | |
232 } | |
233 | |
234 plain[0] = (unsigned char)x10; | |
235 plain[1] = (unsigned char)(x10 >> 8); | |
236 plain[2] = (unsigned char)x32; | |
237 plain[3] = (unsigned char)(x32 >> 8); | |
238 plain[4] = (unsigned char)x54; | |
239 plain[5] = (unsigned char)(x54 >> 8); | |
240 plain[6] = (unsigned char)x76; | |
241 plain[7] = (unsigned char)(x76 >> 8); | |
242 } | |
243 | |
244 #ifdef CLEAN_STACK | |
245 void rc2_ecb_decrypt( const unsigned char *cipher, | |
246 unsigned char *plain, | |
247 symmetric_key *skey) | |
248 { | |
249 _rc2_ecb_decrypt(cipher, plain, skey); | |
250 burn_stack(sizeof(unsigned *) + sizeof(unsigned) * 4 + sizeof(int)); | |
251 } | |
252 #endif | |
253 | |
254 int rc2_test(void) | |
255 { | |
256 #ifndef LTC_TEST | |
257 return CRYPT_NOP; | |
258 #else | |
259 static const struct { | |
260 int keylen; | |
261 unsigned char key[16], pt[8], ct[8]; | |
262 } tests[] = { | |
263 | |
264 { 8, | |
265 { 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
266 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, | |
267 { 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 }, | |
268 { 0x30, 0x64, 0x9e, 0xdf, 0x9b, 0xe7, 0xd2, 0xc2 } | |
269 | |
270 }, | |
271 { 16, | |
272 { 0x88, 0xbc, 0xa9, 0x0e, 0x90, 0x87, 0x5a, 0x7f, | |
273 0x0f, 0x79, 0xc3, 0x84, 0x62, 0x7b, 0xaf, 0xb2 }, | |
274 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, | |
275 { 0x22, 0x69, 0x55, 0x2a, 0xb0, 0xf8, 0x5c, 0xa6 } | |
276 } | |
277 }; | |
278 int x, y, err; | |
279 symmetric_key skey; | |
280 unsigned char tmp[2][8]; | |
281 | |
282 for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) { | |
283 zeromem(tmp, sizeof(tmp)); | |
284 if ((err = rc2_setup(tests[x].key, tests[x].keylen, 0, &skey)) != CRYPT_OK) { | |
285 return err; | |
286 } | |
287 | |
288 rc2_ecb_encrypt(tests[x].pt, tmp[0], &skey); | |
289 rc2_ecb_decrypt(tmp[0], tmp[1], &skey); | |
290 | |
291 if (memcmp(tmp[0], tests[x].ct, 8) != 0 || memcmp(tmp[1], tests[x].pt, 8) != 0) { | |
292 return CRYPT_FAIL_TESTVECTOR; | |
293 } | |
294 | |
295 /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ | |
296 for (y = 0; y < 8; y++) tmp[0][y] = 0; | |
297 for (y = 0; y < 1000; y++) rc2_ecb_encrypt(tmp[0], tmp[0], &skey); | |
298 for (y = 0; y < 1000; y++) rc2_ecb_decrypt(tmp[0], tmp[0], &skey); | |
299 for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; | |
300 } | |
301 return CRYPT_OK; | |
302 #endif | |
303 } | |
304 | |
305 int rc2_keysize(int *keysize) | |
306 { | |
307 _ARGCHK(keysize != NULL); | |
308 if (*keysize < 8) { | |
309 return CRYPT_INVALID_KEYSIZE; | |
310 } else if (*keysize > 128) { | |
311 *keysize = 128; | |
312 } | |
313 return CRYPT_OK; | |
314 } | |
315 | |
316 #endif | |
317 | |
318 | |
319 |