comparison sha256.c @ 3:7faae8f46238 libtomcrypt-orig

Branch renaming
author Matt Johnston <matt@ucc.asn.au>
date Mon, 31 May 2004 18:25:41 +0000
parents
children 6362d3854bb4
comparison
equal deleted inserted replaced
-1:000000000000 3:7faae8f46238
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
2 *
3 * LibTomCrypt is a library that provides various cryptographic
4 * algorithms in a highly modular and flexible manner.
5 *
6 * The library is free for all purposes without any express
7 * guarantee it works.
8 *
9 * Tom St Denis, [email protected], http://libtomcrypt.org
10 */
11
12
13 /* SHA256 by Tom St Denis */
14
15 #include "mycrypt.h"
16
17 #ifdef SHA256
18
19 const struct _hash_descriptor sha256_desc =
20 {
21 "sha256",
22 0,
23 32,
24 64,
25 &sha256_init,
26 &sha256_process,
27 &sha256_done,
28 &sha256_test
29 };
30
31 /* the K array */
32 static const unsigned long K[64] = {
33 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,
34 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,
35 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,
36 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
37 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,
38 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,
39 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,
40 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
41 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,
42 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,
43 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,
44 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
45 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
46 };
47
48 /* Various logical functions */
49 #define Ch(x,y,z) (z ^ (x & (y ^ z)))
50 #define Maj(x,y,z) (((x | y) & z) | (x & y))
51 #define S(x, n) ROR((x),(n))
52 #define R(x, n) (((x)&0xFFFFFFFFUL)>>(n))
53 #define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
54 #define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
55 #define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
56 #define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
57
58 /* compress 512-bits */
59 #ifdef CLEAN_STACK
60 static void _sha256_compress(hash_state * md, unsigned char *buf)
61 #else
62 static void sha256_compress(hash_state * md, unsigned char *buf)
63 #endif
64 {
65 ulong32 S[8], W[64], t0, t1;
66 int i;
67
68 /* copy state into S */
69 for (i = 0; i < 8; i++) {
70 S[i] = md->sha256.state[i];
71 }
72
73 /* copy the state into 512-bits into W[0..15] */
74 for (i = 0; i < 16; i++) {
75 LOAD32H(W[i], buf + (4*i));
76 }
77
78 /* fill W[16..63] */
79 for (i = 16; i < 64; i++) {
80 W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
81 }
82
83 /* Compress */
84 #ifdef SMALL_CODE
85 #define RND(a,b,c,d,e,f,g,h,i) \
86 t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
87 t1 = Sigma0(a) + Maj(a, b, c); \
88 d += t0; \
89 h = t0 + t1;
90
91 for (i = 0; i < 64; i += 8) {
92 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i+0);
93 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],i+1);
94 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],i+2);
95 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],i+3);
96 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],i+4);
97 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],i+5);
98 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],i+6);
99 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],i+7);
100 }
101 #else
102 #define RND(a,b,c,d,e,f,g,h,i,ki) \
103 t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i]; \
104 t1 = Sigma0(a) + Maj(a, b, c); \
105 d += t0; \
106 h = t0 + t1;
107
108 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,0x428a2f98);
109 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,0x71374491);
110 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,0xb5c0fbcf);
111 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,0xe9b5dba5);
112 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,0x3956c25b);
113 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,0x59f111f1);
114 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,0x923f82a4);
115 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,0xab1c5ed5);
116 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,0xd807aa98);
117 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,0x12835b01);
118 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,0x243185be);
119 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,0x550c7dc3);
120 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,0x72be5d74);
121 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,0x80deb1fe);
122 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,0x9bdc06a7);
123 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,0xc19bf174);
124 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,0xe49b69c1);
125 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,0xefbe4786);
126 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,0x0fc19dc6);
127 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,0x240ca1cc);
128 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,0x2de92c6f);
129 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,0x4a7484aa);
130 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,0x5cb0a9dc);
131 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,0x76f988da);
132 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,0x983e5152);
133 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,0xa831c66d);
134 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,0xb00327c8);
135 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,0xbf597fc7);
136 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,0xc6e00bf3);
137 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,0xd5a79147);
138 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,0x06ca6351);
139 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,0x14292967);
140 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,0x27b70a85);
141 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,0x2e1b2138);
142 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,0x4d2c6dfc);
143 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,0x53380d13);
144 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,0x650a7354);
145 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,0x766a0abb);
146 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,0x81c2c92e);
147 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,0x92722c85);
148 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,0xa2bfe8a1);
149 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,0xa81a664b);
150 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,0xc24b8b70);
151 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,0xc76c51a3);
152 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,0xd192e819);
153 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,0xd6990624);
154 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,0xf40e3585);
155 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,0x106aa070);
156 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,0x19a4c116);
157 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,0x1e376c08);
158 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,0x2748774c);
159 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,0x34b0bcb5);
160 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,0x391c0cb3);
161 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,0x4ed8aa4a);
162 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,0x5b9cca4f);
163 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,0x682e6ff3);
164 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,0x748f82ee);
165 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,0x78a5636f);
166 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,0x84c87814);
167 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,0x8cc70208);
168 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,0x90befffa);
169 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,0xa4506ceb);
170 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,0xbef9a3f7);
171 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,0xc67178f2);
172
173 #undef RND
174
175 #endif
176
177 /* feedback */
178 for (i = 0; i < 8; i++) {
179 md->sha256.state[i] = md->sha256.state[i] + S[i];
180 }
181
182 }
183
184 #ifdef CLEAN_STACK
185 static void sha256_compress(hash_state * md, unsigned char *buf)
186 {
187 _sha256_compress(md, buf);
188 burn_stack(sizeof(ulong32) * 74);
189 }
190 #endif
191
192 /* init the sha256 state */
193 void sha256_init(hash_state * md)
194 {
195 _ARGCHK(md != NULL);
196
197 md->sha256.curlen = 0;
198 md->sha256.length = 0;
199 md->sha256.state[0] = 0x6A09E667UL;
200 md->sha256.state[1] = 0xBB67AE85UL;
201 md->sha256.state[2] = 0x3C6EF372UL;
202 md->sha256.state[3] = 0xA54FF53AUL;
203 md->sha256.state[4] = 0x510E527FUL;
204 md->sha256.state[5] = 0x9B05688CUL;
205 md->sha256.state[6] = 0x1F83D9ABUL;
206 md->sha256.state[7] = 0x5BE0CD19UL;
207 }
208
209 HASH_PROCESS(sha256_process, sha256_compress, sha256, 64)
210
211 int sha256_done(hash_state * md, unsigned char *hash)
212 {
213 int i;
214
215 _ARGCHK(md != NULL);
216 _ARGCHK(hash != NULL);
217
218 if (md->sha256.curlen >= sizeof(md->sha256.buf)) {
219 return CRYPT_INVALID_ARG;
220 }
221
222
223 /* increase the length of the message */
224 md->sha256.length += md->sha256.curlen * 8;
225
226 /* append the '1' bit */
227 md->sha256.buf[md->sha256.curlen++] = (unsigned char)0x80;
228
229 /* if the length is currently above 56 bytes we append zeros
230 * then compress. Then we can fall back to padding zeros and length
231 * encoding like normal.
232 */
233 if (md->sha256.curlen > 56) {
234 while (md->sha256.curlen < 64) {
235 md->sha256.buf[md->sha256.curlen++] = (unsigned char)0;
236 }
237 sha256_compress(md, md->sha256.buf);
238 md->sha256.curlen = 0;
239 }
240
241 /* pad upto 56 bytes of zeroes */
242 while (md->sha256.curlen < 56) {
243 md->sha256.buf[md->sha256.curlen++] = (unsigned char)0;
244 }
245
246 /* store length */
247 STORE64H(md->sha256.length, md->sha256.buf+56);
248 sha256_compress(md, md->sha256.buf);
249
250 /* copy output */
251 for (i = 0; i < 8; i++) {
252 STORE32H(md->sha256.state[i], hash+(4*i));
253 }
254 #ifdef CLEAN_STACK
255 zeromem(md, sizeof(hash_state));
256 #endif
257 return CRYPT_OK;
258 }
259
260 int sha256_test(void)
261 {
262 #ifndef LTC_TEST
263 return CRYPT_NOP;
264 #else
265 static const struct {
266 char *msg;
267 unsigned char hash[32];
268 } tests[] = {
269 { "abc",
270 { 0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea,
271 0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23,
272 0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c,
273 0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad }
274 },
275 { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
276 { 0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8,
277 0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39,
278 0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67,
279 0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1 }
280 },
281 };
282
283 int i;
284 unsigned char tmp[32];
285 hash_state md;
286
287 for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
288 sha256_init(&md);
289 sha256_process(&md, (unsigned char*)tests[i].msg, (unsigned long)strlen(tests[i].msg));
290 sha256_done(&md, tmp);
291 if (memcmp(tmp, tests[i].hash, 32) != 0) {
292 return CRYPT_FAIL_TESTVECTOR;
293 }
294 }
295 return CRYPT_OK;
296 #endif
297 }
298
299 #ifdef SHA224
300 #include "sha224.c"
301 #endif
302
303 #endif
304
305