Mercurial > dropbear
comparison bn_mp_gcd.c @ 2:86e0b50a9b58 libtommath-orig ltm-0.30-orig
ltm 0.30 orig import
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 31 May 2004 18:25:22 +0000 |
parents | |
children | d29b64170cf0 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 2:86e0b50a9b58 |
---|---|
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
2 * | |
3 * LibTomMath is a library that provides multiple-precision | |
4 * integer arithmetic as well as number theoretic functionality. | |
5 * | |
6 * The library was designed directly after the MPI library by | |
7 * Michael Fromberger but has been written from scratch with | |
8 * additional optimizations in place. | |
9 * | |
10 * The library is free for all purposes without any express | |
11 * guarantee it works. | |
12 * | |
13 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
14 */ | |
15 #include <tommath.h> | |
16 | |
17 /* Greatest Common Divisor using the binary method */ | |
18 int mp_gcd (mp_int * a, mp_int * b, mp_int * c) | |
19 { | |
20 mp_int u, v; | |
21 int k, u_lsb, v_lsb, res; | |
22 | |
23 /* either zero than gcd is the largest */ | |
24 if (mp_iszero (a) == 1 && mp_iszero (b) == 0) { | |
25 return mp_abs (b, c); | |
26 } | |
27 if (mp_iszero (a) == 0 && mp_iszero (b) == 1) { | |
28 return mp_abs (a, c); | |
29 } | |
30 | |
31 /* optimized. At this point if a == 0 then | |
32 * b must equal zero too | |
33 */ | |
34 if (mp_iszero (a) == 1) { | |
35 mp_zero(c); | |
36 return MP_OKAY; | |
37 } | |
38 | |
39 /* get copies of a and b we can modify */ | |
40 if ((res = mp_init_copy (&u, a)) != MP_OKAY) { | |
41 return res; | |
42 } | |
43 | |
44 if ((res = mp_init_copy (&v, b)) != MP_OKAY) { | |
45 goto __U; | |
46 } | |
47 | |
48 /* must be positive for the remainder of the algorithm */ | |
49 u.sign = v.sign = MP_ZPOS; | |
50 | |
51 /* B1. Find the common power of two for u and v */ | |
52 u_lsb = mp_cnt_lsb(&u); | |
53 v_lsb = mp_cnt_lsb(&v); | |
54 k = MIN(u_lsb, v_lsb); | |
55 | |
56 if (k > 0) { | |
57 /* divide the power of two out */ | |
58 if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) { | |
59 goto __V; | |
60 } | |
61 | |
62 if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) { | |
63 goto __V; | |
64 } | |
65 } | |
66 | |
67 /* divide any remaining factors of two out */ | |
68 if (u_lsb != k) { | |
69 if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) { | |
70 goto __V; | |
71 } | |
72 } | |
73 | |
74 if (v_lsb != k) { | |
75 if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) { | |
76 goto __V; | |
77 } | |
78 } | |
79 | |
80 while (mp_iszero(&v) == 0) { | |
81 /* make sure v is the largest */ | |
82 if (mp_cmp_mag(&u, &v) == MP_GT) { | |
83 /* swap u and v to make sure v is >= u */ | |
84 mp_exch(&u, &v); | |
85 } | |
86 | |
87 /* subtract smallest from largest */ | |
88 if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) { | |
89 goto __V; | |
90 } | |
91 | |
92 /* Divide out all factors of two */ | |
93 if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) { | |
94 goto __V; | |
95 } | |
96 } | |
97 | |
98 /* multiply by 2**k which we divided out at the beginning */ | |
99 if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) { | |
100 goto __V; | |
101 } | |
102 c->sign = MP_ZPOS; | |
103 res = MP_OKAY; | |
104 __V:mp_clear (&u); | |
105 __U:mp_clear (&v); | |
106 return res; | |
107 } |