Mercurial > dropbear
comparison bn_mp_karatsuba_sqr.c @ 2:86e0b50a9b58 libtommath-orig ltm-0.30-orig
ltm 0.30 orig import
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 31 May 2004 18:25:22 +0000 |
parents | |
children | d29b64170cf0 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 2:86e0b50a9b58 |
---|---|
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
2 * | |
3 * LibTomMath is a library that provides multiple-precision | |
4 * integer arithmetic as well as number theoretic functionality. | |
5 * | |
6 * The library was designed directly after the MPI library by | |
7 * Michael Fromberger but has been written from scratch with | |
8 * additional optimizations in place. | |
9 * | |
10 * The library is free for all purposes without any express | |
11 * guarantee it works. | |
12 * | |
13 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
14 */ | |
15 #include <tommath.h> | |
16 | |
17 /* Karatsuba squaring, computes b = a*a using three | |
18 * half size squarings | |
19 * | |
20 * See comments of mp_karatsuba_mul for details. It | |
21 * is essentially the same algorithm but merely | |
22 * tuned to perform recursive squarings. | |
23 */ | |
24 int mp_karatsuba_sqr (mp_int * a, mp_int * b) | |
25 { | |
26 mp_int x0, x1, t1, t2, x0x0, x1x1; | |
27 int B, err; | |
28 | |
29 err = MP_MEM; | |
30 | |
31 /* min # of digits */ | |
32 B = a->used; | |
33 | |
34 /* now divide in two */ | |
35 B = B >> 1; | |
36 | |
37 /* init copy all the temps */ | |
38 if (mp_init_size (&x0, B) != MP_OKAY) | |
39 goto ERR; | |
40 if (mp_init_size (&x1, a->used - B) != MP_OKAY) | |
41 goto X0; | |
42 | |
43 /* init temps */ | |
44 if (mp_init_size (&t1, a->used * 2) != MP_OKAY) | |
45 goto X1; | |
46 if (mp_init_size (&t2, a->used * 2) != MP_OKAY) | |
47 goto T1; | |
48 if (mp_init_size (&x0x0, B * 2) != MP_OKAY) | |
49 goto T2; | |
50 if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY) | |
51 goto X0X0; | |
52 | |
53 { | |
54 register int x; | |
55 register mp_digit *dst, *src; | |
56 | |
57 src = a->dp; | |
58 | |
59 /* now shift the digits */ | |
60 dst = x0.dp; | |
61 for (x = 0; x < B; x++) { | |
62 *dst++ = *src++; | |
63 } | |
64 | |
65 dst = x1.dp; | |
66 for (x = B; x < a->used; x++) { | |
67 *dst++ = *src++; | |
68 } | |
69 } | |
70 | |
71 x0.used = B; | |
72 x1.used = a->used - B; | |
73 | |
74 mp_clamp (&x0); | |
75 | |
76 /* now calc the products x0*x0 and x1*x1 */ | |
77 if (mp_sqr (&x0, &x0x0) != MP_OKAY) | |
78 goto X1X1; /* x0x0 = x0*x0 */ | |
79 if (mp_sqr (&x1, &x1x1) != MP_OKAY) | |
80 goto X1X1; /* x1x1 = x1*x1 */ | |
81 | |
82 /* now calc (x1-x0)**2 */ | |
83 if (mp_sub (&x1, &x0, &t1) != MP_OKAY) | |
84 goto X1X1; /* t1 = x1 - x0 */ | |
85 if (mp_sqr (&t1, &t1) != MP_OKAY) | |
86 goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */ | |
87 | |
88 /* add x0y0 */ | |
89 if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY) | |
90 goto X1X1; /* t2 = x0x0 + x1x1 */ | |
91 if (mp_sub (&t2, &t1, &t1) != MP_OKAY) | |
92 goto X1X1; /* t1 = x0x0 + x1x1 - (x1-x0)*(x1-x0) */ | |
93 | |
94 /* shift by B */ | |
95 if (mp_lshd (&t1, B) != MP_OKAY) | |
96 goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */ | |
97 if (mp_lshd (&x1x1, B * 2) != MP_OKAY) | |
98 goto X1X1; /* x1x1 = x1x1 << 2*B */ | |
99 | |
100 if (mp_add (&x0x0, &t1, &t1) != MP_OKAY) | |
101 goto X1X1; /* t1 = x0x0 + t1 */ | |
102 if (mp_add (&t1, &x1x1, b) != MP_OKAY) | |
103 goto X1X1; /* t1 = x0x0 + t1 + x1x1 */ | |
104 | |
105 err = MP_OKAY; | |
106 | |
107 X1X1:mp_clear (&x1x1); | |
108 X0X0:mp_clear (&x0x0); | |
109 T2:mp_clear (&t2); | |
110 T1:mp_clear (&t1); | |
111 X1:mp_clear (&x1); | |
112 X0:mp_clear (&x0); | |
113 ERR: | |
114 return err; | |
115 } |