Mercurial > dropbear
comparison etc/mersenne.c @ 2:86e0b50a9b58 libtommath-orig ltm-0.30-orig
ltm 0.30 orig import
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 31 May 2004 18:25:22 +0000 |
parents | |
children | d8254fc979e9 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 2:86e0b50a9b58 |
---|---|
1 /* Finds Mersenne primes using the Lucas-Lehmer test | |
2 * | |
3 * Tom St Denis, [email protected] | |
4 */ | |
5 #include <time.h> | |
6 #include <tommath.h> | |
7 | |
8 int | |
9 is_mersenne (long s, int *pp) | |
10 { | |
11 mp_int n, u; | |
12 int res, k; | |
13 | |
14 *pp = 0; | |
15 | |
16 if ((res = mp_init (&n)) != MP_OKAY) { | |
17 return res; | |
18 } | |
19 | |
20 if ((res = mp_init (&u)) != MP_OKAY) { | |
21 goto __N; | |
22 } | |
23 | |
24 /* n = 2^s - 1 */ | |
25 if ((res = mp_2expt(&n, s)) != MP_OKAY) { | |
26 goto __MU; | |
27 } | |
28 if ((res = mp_sub_d (&n, 1, &n)) != MP_OKAY) { | |
29 goto __MU; | |
30 } | |
31 | |
32 /* set u=4 */ | |
33 mp_set (&u, 4); | |
34 | |
35 /* for k=1 to s-2 do */ | |
36 for (k = 1; k <= s - 2; k++) { | |
37 /* u = u^2 - 2 mod n */ | |
38 if ((res = mp_sqr (&u, &u)) != MP_OKAY) { | |
39 goto __MU; | |
40 } | |
41 if ((res = mp_sub_d (&u, 2, &u)) != MP_OKAY) { | |
42 goto __MU; | |
43 } | |
44 | |
45 /* make sure u is positive */ | |
46 while (u.sign == MP_NEG) { | |
47 if ((res = mp_add (&u, &n, &u)) != MP_OKAY) { | |
48 goto __MU; | |
49 } | |
50 } | |
51 | |
52 /* reduce */ | |
53 if ((res = mp_reduce_2k (&u, &n, 1)) != MP_OKAY) { | |
54 goto __MU; | |
55 } | |
56 } | |
57 | |
58 /* if u == 0 then its prime */ | |
59 if (mp_iszero (&u) == 1) { | |
60 mp_prime_is_prime(&n, 8, pp); | |
61 if (*pp != 1) printf("FAILURE\n"); | |
62 } | |
63 | |
64 res = MP_OKAY; | |
65 __MU:mp_clear (&u); | |
66 __N:mp_clear (&n); | |
67 return res; | |
68 } | |
69 | |
70 /* square root of a long < 65536 */ | |
71 long | |
72 i_sqrt (long x) | |
73 { | |
74 long x1, x2; | |
75 | |
76 x2 = 16; | |
77 do { | |
78 x1 = x2; | |
79 x2 = x1 - ((x1 * x1) - x) / (2 * x1); | |
80 } while (x1 != x2); | |
81 | |
82 if (x1 * x1 > x) { | |
83 --x1; | |
84 } | |
85 | |
86 return x1; | |
87 } | |
88 | |
89 /* is the long prime by brute force */ | |
90 int | |
91 isprime (long k) | |
92 { | |
93 long y, z; | |
94 | |
95 y = i_sqrt (k); | |
96 for (z = 2; z <= y; z++) { | |
97 if ((k % z) == 0) | |
98 return 0; | |
99 } | |
100 return 1; | |
101 } | |
102 | |
103 | |
104 int | |
105 main (void) | |
106 { | |
107 int pp; | |
108 long k; | |
109 clock_t tt; | |
110 | |
111 k = 3; | |
112 | |
113 for (;;) { | |
114 /* start time */ | |
115 tt = clock (); | |
116 | |
117 /* test if 2^k - 1 is prime */ | |
118 if (is_mersenne (k, &pp) != MP_OKAY) { | |
119 printf ("Whoa error\n"); | |
120 return -1; | |
121 } | |
122 | |
123 if (pp == 1) { | |
124 /* count time */ | |
125 tt = clock () - tt; | |
126 | |
127 /* display if prime */ | |
128 printf ("2^%-5ld - 1 is prime, test took %ld ticks\n", k, tt); | |
129 } | |
130 | |
131 /* goto next odd exponent */ | |
132 k += 2; | |
133 | |
134 /* but make sure its prime */ | |
135 while (isprime (k) == 0) { | |
136 k += 2; | |
137 } | |
138 } | |
139 return 0; | |
140 } |