comparison etc/pprime.c @ 2:86e0b50a9b58 libtommath-orig ltm-0.30-orig

ltm 0.30 orig import
author Matt Johnston <matt@ucc.asn.au>
date Mon, 31 May 2004 18:25:22 +0000
parents
children d8254fc979e9
comparison
equal deleted inserted replaced
-1:000000000000 2:86e0b50a9b58
1 /* Generates provable primes
2 *
3 * See http://iahu.ca:8080/papers/pp.pdf for more info.
4 *
5 * Tom St Denis, [email protected], http://tom.iahu.ca
6 */
7 #include <time.h>
8 #include "tommath.h"
9
10 int n_prime;
11 FILE *primes;
12
13 /* fast square root */
14 static mp_digit
15 i_sqrt (mp_word x)
16 {
17 mp_word x1, x2;
18
19 x2 = x;
20 do {
21 x1 = x2;
22 x2 = x1 - ((x1 * x1) - x) / (2 * x1);
23 } while (x1 != x2);
24
25 if (x1 * x1 > x) {
26 --x1;
27 }
28
29 return x1;
30 }
31
32
33 /* generates a prime digit */
34 static void gen_prime (void)
35 {
36 mp_digit r, x, y, next;
37 FILE *out;
38
39 out = fopen("pprime.dat", "wb");
40
41 /* write first set of primes */
42 r = 3; fwrite(&r, 1, sizeof(mp_digit), out);
43 r = 5; fwrite(&r, 1, sizeof(mp_digit), out);
44 r = 7; fwrite(&r, 1, sizeof(mp_digit), out);
45 r = 11; fwrite(&r, 1, sizeof(mp_digit), out);
46 r = 13; fwrite(&r, 1, sizeof(mp_digit), out);
47 r = 17; fwrite(&r, 1, sizeof(mp_digit), out);
48 r = 19; fwrite(&r, 1, sizeof(mp_digit), out);
49 r = 23; fwrite(&r, 1, sizeof(mp_digit), out);
50 r = 29; fwrite(&r, 1, sizeof(mp_digit), out);
51 r = 31; fwrite(&r, 1, sizeof(mp_digit), out);
52
53 /* get square root, since if 'r' is composite its factors must be < than this */
54 y = i_sqrt (r);
55 next = (y + 1) * (y + 1);
56
57 for (;;) {
58 do {
59 r += 2; /* next candidate */
60 r &= MP_MASK;
61 if (r < 31) break;
62
63 /* update sqrt ? */
64 if (next <= r) {
65 ++y;
66 next = (y + 1) * (y + 1);
67 }
68
69 /* loop if divisible by 3,5,7,11,13,17,19,23,29 */
70 if ((r % 3) == 0) {
71 x = 0;
72 continue;
73 }
74 if ((r % 5) == 0) {
75 x = 0;
76 continue;
77 }
78 if ((r % 7) == 0) {
79 x = 0;
80 continue;
81 }
82 if ((r % 11) == 0) {
83 x = 0;
84 continue;
85 }
86 if ((r % 13) == 0) {
87 x = 0;
88 continue;
89 }
90 if ((r % 17) == 0) {
91 x = 0;
92 continue;
93 }
94 if ((r % 19) == 0) {
95 x = 0;
96 continue;
97 }
98 if ((r % 23) == 0) {
99 x = 0;
100 continue;
101 }
102 if ((r % 29) == 0) {
103 x = 0;
104 continue;
105 }
106
107 /* now check if r is divisible by x + k={1,7,11,13,17,19,23,29} */
108 for (x = 30; x <= y; x += 30) {
109 if ((r % (x + 1)) == 0) {
110 x = 0;
111 break;
112 }
113 if ((r % (x + 7)) == 0) {
114 x = 0;
115 break;
116 }
117 if ((r % (x + 11)) == 0) {
118 x = 0;
119 break;
120 }
121 if ((r % (x + 13)) == 0) {
122 x = 0;
123 break;
124 }
125 if ((r % (x + 17)) == 0) {
126 x = 0;
127 break;
128 }
129 if ((r % (x + 19)) == 0) {
130 x = 0;
131 break;
132 }
133 if ((r % (x + 23)) == 0) {
134 x = 0;
135 break;
136 }
137 if ((r % (x + 29)) == 0) {
138 x = 0;
139 break;
140 }
141 }
142 } while (x == 0);
143 if (r > 31) { fwrite(&r, 1, sizeof(mp_digit), out); printf("%9d\r", r); fflush(stdout); }
144 if (r < 31) break;
145 }
146
147 fclose(out);
148 }
149
150 void load_tab(void)
151 {
152 primes = fopen("pprime.dat", "rb");
153 if (primes == NULL) {
154 gen_prime();
155 primes = fopen("pprime.dat", "rb");
156 }
157 fseek(primes, 0, SEEK_END);
158 n_prime = ftell(primes) / sizeof(mp_digit);
159 }
160
161 mp_digit prime_digit(void)
162 {
163 int n;
164 mp_digit d;
165
166 n = abs(rand()) % n_prime;
167 fseek(primes, n * sizeof(mp_digit), SEEK_SET);
168 fread(&d, 1, sizeof(mp_digit), primes);
169 return d;
170 }
171
172
173 /* makes a prime of at least k bits */
174 int
175 pprime (int k, int li, mp_int * p, mp_int * q)
176 {
177 mp_int a, b, c, n, x, y, z, v;
178 int res, ii;
179 static const mp_digit bases[] = { 2, 3, 5, 7, 11, 13, 17, 19 };
180
181 /* single digit ? */
182 if (k <= (int) DIGIT_BIT) {
183 mp_set (p, prime_digit ());
184 return MP_OKAY;
185 }
186
187 if ((res = mp_init (&c)) != MP_OKAY) {
188 return res;
189 }
190
191 if ((res = mp_init (&v)) != MP_OKAY) {
192 goto __C;
193 }
194
195 /* product of first 50 primes */
196 if ((res =
197 mp_read_radix (&v,
198 "19078266889580195013601891820992757757219839668357012055907516904309700014933909014729740190",
199 10)) != MP_OKAY) {
200 goto __V;
201 }
202
203 if ((res = mp_init (&a)) != MP_OKAY) {
204 goto __V;
205 }
206
207 /* set the prime */
208 mp_set (&a, prime_digit ());
209
210 if ((res = mp_init (&b)) != MP_OKAY) {
211 goto __A;
212 }
213
214 if ((res = mp_init (&n)) != MP_OKAY) {
215 goto __B;
216 }
217
218 if ((res = mp_init (&x)) != MP_OKAY) {
219 goto __N;
220 }
221
222 if ((res = mp_init (&y)) != MP_OKAY) {
223 goto __X;
224 }
225
226 if ((res = mp_init (&z)) != MP_OKAY) {
227 goto __Y;
228 }
229
230 /* now loop making the single digit */
231 while (mp_count_bits (&a) < k) {
232 fprintf (stderr, "prime has %4d bits left\r", k - mp_count_bits (&a));
233 fflush (stderr);
234 top:
235 mp_set (&b, prime_digit ());
236
237 /* now compute z = a * b * 2 */
238 if ((res = mp_mul (&a, &b, &z)) != MP_OKAY) { /* z = a * b */
239 goto __Z;
240 }
241
242 if ((res = mp_copy (&z, &c)) != MP_OKAY) { /* c = a * b */
243 goto __Z;
244 }
245
246 if ((res = mp_mul_2 (&z, &z)) != MP_OKAY) { /* z = 2 * a * b */
247 goto __Z;
248 }
249
250 /* n = z + 1 */
251 if ((res = mp_add_d (&z, 1, &n)) != MP_OKAY) { /* n = z + 1 */
252 goto __Z;
253 }
254
255 /* check (n, v) == 1 */
256 if ((res = mp_gcd (&n, &v, &y)) != MP_OKAY) { /* y = (n, v) */
257 goto __Z;
258 }
259
260 if (mp_cmp_d (&y, 1) != MP_EQ)
261 goto top;
262
263 /* now try base x=bases[ii] */
264 for (ii = 0; ii < li; ii++) {
265 mp_set (&x, bases[ii]);
266
267 /* compute x^a mod n */
268 if ((res = mp_exptmod (&x, &a, &n, &y)) != MP_OKAY) { /* y = x^a mod n */
269 goto __Z;
270 }
271
272 /* if y == 1 loop */
273 if (mp_cmp_d (&y, 1) == MP_EQ)
274 continue;
275
276 /* now x^2a mod n */
277 if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2a mod n */
278 goto __Z;
279 }
280
281 if (mp_cmp_d (&y, 1) == MP_EQ)
282 continue;
283
284 /* compute x^b mod n */
285 if ((res = mp_exptmod (&x, &b, &n, &y)) != MP_OKAY) { /* y = x^b mod n */
286 goto __Z;
287 }
288
289 /* if y == 1 loop */
290 if (mp_cmp_d (&y, 1) == MP_EQ)
291 continue;
292
293 /* now x^2b mod n */
294 if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2b mod n */
295 goto __Z;
296 }
297
298 if (mp_cmp_d (&y, 1) == MP_EQ)
299 continue;
300
301 /* compute x^c mod n == x^ab mod n */
302 if ((res = mp_exptmod (&x, &c, &n, &y)) != MP_OKAY) { /* y = x^ab mod n */
303 goto __Z;
304 }
305
306 /* if y == 1 loop */
307 if (mp_cmp_d (&y, 1) == MP_EQ)
308 continue;
309
310 /* now compute (x^c mod n)^2 */
311 if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2ab mod n */
312 goto __Z;
313 }
314
315 /* y should be 1 */
316 if (mp_cmp_d (&y, 1) != MP_EQ)
317 continue;
318 break;
319 }
320
321 /* no bases worked? */
322 if (ii == li)
323 goto top;
324
325 {
326 char buf[4096];
327
328 mp_toradix(&n, buf, 10);
329 printf("Certificate of primality for:\n%s\n\n", buf);
330 mp_toradix(&a, buf, 10);
331 printf("A == \n%s\n\n", buf);
332 mp_toradix(&b, buf, 10);
333 printf("B == \n%s\n\nG == %d\n", buf, bases[ii]);
334 printf("----------------------------------------------------------------\n");
335 }
336
337 /* a = n */
338 mp_copy (&n, &a);
339 }
340
341 /* get q to be the order of the large prime subgroup */
342 mp_sub_d (&n, 1, q);
343 mp_div_2 (q, q);
344 mp_div (q, &b, q, NULL);
345
346 mp_exch (&n, p);
347
348 res = MP_OKAY;
349 __Z:mp_clear (&z);
350 __Y:mp_clear (&y);
351 __X:mp_clear (&x);
352 __N:mp_clear (&n);
353 __B:mp_clear (&b);
354 __A:mp_clear (&a);
355 __V:mp_clear (&v);
356 __C:mp_clear (&c);
357 return res;
358 }
359
360
361 int
362 main (void)
363 {
364 mp_int p, q;
365 char buf[4096];
366 int k, li;
367 clock_t t1;
368
369 srand (time (NULL));
370 load_tab();
371
372 printf ("Enter # of bits: \n");
373 fgets (buf, sizeof (buf), stdin);
374 sscanf (buf, "%d", &k);
375
376 printf ("Enter number of bases to try (1 to 8):\n");
377 fgets (buf, sizeof (buf), stdin);
378 sscanf (buf, "%d", &li);
379
380
381 mp_init (&p);
382 mp_init (&q);
383
384 t1 = clock ();
385 pprime (k, li, &p, &q);
386 t1 = clock () - t1;
387
388 printf ("\n\nTook %ld ticks, %d bits\n", t1, mp_count_bits (&p));
389
390 mp_toradix (&p, buf, 10);
391 printf ("P == %s\n", buf);
392 mp_toradix (&q, buf, 10);
393 printf ("Q == %s\n", buf);
394
395 return 0;
396 }