Mercurial > dropbear
comparison bn_mp_exptmod.c @ 282:91fbc376f010 libtommath-orig libtommath-0.35
Import of libtommath 0.35
From ltm-0.35.tar.bz2 SHA1 of 3f193dbae9351e92d02530994fa18236f7fde01c
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Wed, 08 Mar 2006 13:16:18 +0000 |
parents | |
children | 97db060d0ef5 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 282:91fbc376f010 |
---|---|
1 #include <tommath.h> | |
2 #ifdef BN_MP_EXPTMOD_C | |
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
4 * | |
5 * LibTomMath is a library that provides multiple-precision | |
6 * integer arithmetic as well as number theoretic functionality. | |
7 * | |
8 * The library was designed directly after the MPI library by | |
9 * Michael Fromberger but has been written from scratch with | |
10 * additional optimizations in place. | |
11 * | |
12 * The library is free for all purposes without any express | |
13 * guarantee it works. | |
14 * | |
15 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
16 */ | |
17 | |
18 | |
19 /* this is a shell function that calls either the normal or Montgomery | |
20 * exptmod functions. Originally the call to the montgomery code was | |
21 * embedded in the normal function but that wasted alot of stack space | |
22 * for nothing (since 99% of the time the Montgomery code would be called) | |
23 */ | |
24 int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | |
25 { | |
26 int dr; | |
27 | |
28 /* modulus P must be positive */ | |
29 if (P->sign == MP_NEG) { | |
30 return MP_VAL; | |
31 } | |
32 | |
33 /* if exponent X is negative we have to recurse */ | |
34 if (X->sign == MP_NEG) { | |
35 #ifdef BN_MP_INVMOD_C | |
36 mp_int tmpG, tmpX; | |
37 int err; | |
38 | |
39 /* first compute 1/G mod P */ | |
40 if ((err = mp_init(&tmpG)) != MP_OKAY) { | |
41 return err; | |
42 } | |
43 if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { | |
44 mp_clear(&tmpG); | |
45 return err; | |
46 } | |
47 | |
48 /* now get |X| */ | |
49 if ((err = mp_init(&tmpX)) != MP_OKAY) { | |
50 mp_clear(&tmpG); | |
51 return err; | |
52 } | |
53 if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { | |
54 mp_clear_multi(&tmpG, &tmpX, NULL); | |
55 return err; | |
56 } | |
57 | |
58 /* and now compute (1/G)**|X| instead of G**X [X < 0] */ | |
59 err = mp_exptmod(&tmpG, &tmpX, P, Y); | |
60 mp_clear_multi(&tmpG, &tmpX, NULL); | |
61 return err; | |
62 #else | |
63 /* no invmod */ | |
64 return MP_VAL; | |
65 #endif | |
66 } | |
67 | |
68 /* modified diminished radix reduction */ | |
69 #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) | |
70 if (mp_reduce_is_2k_l(P) == MP_YES) { | |
71 return s_mp_exptmod(G, X, P, Y, 1); | |
72 } | |
73 #endif | |
74 | |
75 #ifdef BN_MP_DR_IS_MODULUS_C | |
76 /* is it a DR modulus? */ | |
77 dr = mp_dr_is_modulus(P); | |
78 #else | |
79 /* default to no */ | |
80 dr = 0; | |
81 #endif | |
82 | |
83 #ifdef BN_MP_REDUCE_IS_2K_C | |
84 /* if not, is it a unrestricted DR modulus? */ | |
85 if (dr == 0) { | |
86 dr = mp_reduce_is_2k(P) << 1; | |
87 } | |
88 #endif | |
89 | |
90 /* if the modulus is odd or dr != 0 use the montgomery method */ | |
91 #ifdef BN_MP_EXPTMOD_FAST_C | |
92 if (mp_isodd (P) == 1 || dr != 0) { | |
93 return mp_exptmod_fast (G, X, P, Y, dr); | |
94 } else { | |
95 #endif | |
96 #ifdef BN_S_MP_EXPTMOD_C | |
97 /* otherwise use the generic Barrett reduction technique */ | |
98 return s_mp_exptmod (G, X, P, Y, 0); | |
99 #else | |
100 /* no exptmod for evens */ | |
101 return MP_VAL; | |
102 #endif | |
103 #ifdef BN_MP_EXPTMOD_FAST_C | |
104 } | |
105 #endif | |
106 } | |
107 | |
108 #endif |