Mercurial > dropbear
comparison bn_mp_is_square.c @ 282:91fbc376f010 libtommath-orig libtommath-0.35
Import of libtommath 0.35
From ltm-0.35.tar.bz2 SHA1 of 3f193dbae9351e92d02530994fa18236f7fde01c
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Wed, 08 Mar 2006 13:16:18 +0000 |
parents | |
children | 97db060d0ef5 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 282:91fbc376f010 |
---|---|
1 #include <tommath.h> | |
2 #ifdef BN_MP_IS_SQUARE_C | |
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
4 * | |
5 * LibTomMath is a library that provides multiple-precision | |
6 * integer arithmetic as well as number theoretic functionality. | |
7 * | |
8 * The library was designed directly after the MPI library by | |
9 * Michael Fromberger but has been written from scratch with | |
10 * additional optimizations in place. | |
11 * | |
12 * The library is free for all purposes without any express | |
13 * guarantee it works. | |
14 * | |
15 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
16 */ | |
17 | |
18 /* Check if remainders are possible squares - fast exclude non-squares */ | |
19 static const char rem_128[128] = { | |
20 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, | |
21 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, | |
22 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, | |
23 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, | |
24 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, | |
25 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, | |
26 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, | |
27 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1 | |
28 }; | |
29 | |
30 static const char rem_105[105] = { | |
31 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, | |
32 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, | |
33 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, | |
34 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, | |
35 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, | |
36 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, | |
37 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1 | |
38 }; | |
39 | |
40 /* Store non-zero to ret if arg is square, and zero if not */ | |
41 int mp_is_square(mp_int *arg,int *ret) | |
42 { | |
43 int res; | |
44 mp_digit c; | |
45 mp_int t; | |
46 unsigned long r; | |
47 | |
48 /* Default to Non-square :) */ | |
49 *ret = MP_NO; | |
50 | |
51 if (arg->sign == MP_NEG) { | |
52 return MP_VAL; | |
53 } | |
54 | |
55 /* digits used? (TSD) */ | |
56 if (arg->used == 0) { | |
57 return MP_OKAY; | |
58 } | |
59 | |
60 /* First check mod 128 (suppose that DIGIT_BIT is at least 7) */ | |
61 if (rem_128[127 & DIGIT(arg,0)] == 1) { | |
62 return MP_OKAY; | |
63 } | |
64 | |
65 /* Next check mod 105 (3*5*7) */ | |
66 if ((res = mp_mod_d(arg,105,&c)) != MP_OKAY) { | |
67 return res; | |
68 } | |
69 if (rem_105[c] == 1) { | |
70 return MP_OKAY; | |
71 } | |
72 | |
73 | |
74 if ((res = mp_init_set_int(&t,11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) { | |
75 return res; | |
76 } | |
77 if ((res = mp_mod(arg,&t,&t)) != MP_OKAY) { | |
78 goto ERR; | |
79 } | |
80 r = mp_get_int(&t); | |
81 /* Check for other prime modules, note it's not an ERROR but we must | |
82 * free "t" so the easiest way is to goto ERR. We know that res | |
83 * is already equal to MP_OKAY from the mp_mod call | |
84 */ | |
85 if ( (1L<<(r%11)) & 0x5C4L ) goto ERR; | |
86 if ( (1L<<(r%13)) & 0x9E4L ) goto ERR; | |
87 if ( (1L<<(r%17)) & 0x5CE8L ) goto ERR; | |
88 if ( (1L<<(r%19)) & 0x4F50CL ) goto ERR; | |
89 if ( (1L<<(r%23)) & 0x7ACCA0L ) goto ERR; | |
90 if ( (1L<<(r%29)) & 0xC2EDD0CL ) goto ERR; | |
91 if ( (1L<<(r%31)) & 0x6DE2B848L ) goto ERR; | |
92 | |
93 /* Final check - is sqr(sqrt(arg)) == arg ? */ | |
94 if ((res = mp_sqrt(arg,&t)) != MP_OKAY) { | |
95 goto ERR; | |
96 } | |
97 if ((res = mp_sqr(&t,&t)) != MP_OKAY) { | |
98 goto ERR; | |
99 } | |
100 | |
101 *ret = (mp_cmp_mag(&t,arg) == MP_EQ) ? MP_YES : MP_NO; | |
102 ERR:mp_clear(&t); | |
103 return res; | |
104 } | |
105 #endif |