Mercurial > dropbear
comparison bn_mp_reduce.c @ 282:91fbc376f010 libtommath-orig libtommath-0.35
Import of libtommath 0.35
From ltm-0.35.tar.bz2 SHA1 of 3f193dbae9351e92d02530994fa18236f7fde01c
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Wed, 08 Mar 2006 13:16:18 +0000 |
parents | |
children | 97db060d0ef5 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 282:91fbc376f010 |
---|---|
1 #include <tommath.h> | |
2 #ifdef BN_MP_REDUCE_C | |
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
4 * | |
5 * LibTomMath is a library that provides multiple-precision | |
6 * integer arithmetic as well as number theoretic functionality. | |
7 * | |
8 * The library was designed directly after the MPI library by | |
9 * Michael Fromberger but has been written from scratch with | |
10 * additional optimizations in place. | |
11 * | |
12 * The library is free for all purposes without any express | |
13 * guarantee it works. | |
14 * | |
15 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
16 */ | |
17 | |
18 /* reduces x mod m, assumes 0 < x < m**2, mu is | |
19 * precomputed via mp_reduce_setup. | |
20 * From HAC pp.604 Algorithm 14.42 | |
21 */ | |
22 int mp_reduce (mp_int * x, mp_int * m, mp_int * mu) | |
23 { | |
24 mp_int q; | |
25 int res, um = m->used; | |
26 | |
27 /* q = x */ | |
28 if ((res = mp_init_copy (&q, x)) != MP_OKAY) { | |
29 return res; | |
30 } | |
31 | |
32 /* q1 = x / b**(k-1) */ | |
33 mp_rshd (&q, um - 1); | |
34 | |
35 /* according to HAC this optimization is ok */ | |
36 if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) { | |
37 if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) { | |
38 goto CLEANUP; | |
39 } | |
40 } else { | |
41 #ifdef BN_S_MP_MUL_HIGH_DIGS_C | |
42 if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) { | |
43 goto CLEANUP; | |
44 } | |
45 #elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C) | |
46 if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) { | |
47 goto CLEANUP; | |
48 } | |
49 #else | |
50 { | |
51 res = MP_VAL; | |
52 goto CLEANUP; | |
53 } | |
54 #endif | |
55 } | |
56 | |
57 /* q3 = q2 / b**(k+1) */ | |
58 mp_rshd (&q, um + 1); | |
59 | |
60 /* x = x mod b**(k+1), quick (no division) */ | |
61 if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) { | |
62 goto CLEANUP; | |
63 } | |
64 | |
65 /* q = q * m mod b**(k+1), quick (no division) */ | |
66 if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) { | |
67 goto CLEANUP; | |
68 } | |
69 | |
70 /* x = x - q */ | |
71 if ((res = mp_sub (x, &q, x)) != MP_OKAY) { | |
72 goto CLEANUP; | |
73 } | |
74 | |
75 /* If x < 0, add b**(k+1) to it */ | |
76 if (mp_cmp_d (x, 0) == MP_LT) { | |
77 mp_set (&q, 1); | |
78 if ((res = mp_lshd (&q, um + 1)) != MP_OKAY) | |
79 goto CLEANUP; | |
80 if ((res = mp_add (x, &q, x)) != MP_OKAY) | |
81 goto CLEANUP; | |
82 } | |
83 | |
84 /* Back off if it's too big */ | |
85 while (mp_cmp (x, m) != MP_LT) { | |
86 if ((res = s_mp_sub (x, m, x)) != MP_OKAY) { | |
87 goto CLEANUP; | |
88 } | |
89 } | |
90 | |
91 CLEANUP: | |
92 mp_clear (&q); | |
93 | |
94 return res; | |
95 } | |
96 #endif |