Mercurial > dropbear
comparison etc/pprime.c @ 282:91fbc376f010 libtommath-orig libtommath-0.35
Import of libtommath 0.35
From ltm-0.35.tar.bz2 SHA1 of 3f193dbae9351e92d02530994fa18236f7fde01c
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Wed, 08 Mar 2006 13:16:18 +0000 |
parents | |
children | 97db060d0ef5 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 282:91fbc376f010 |
---|---|
1 /* Generates provable primes | |
2 * | |
3 * See http://iahu.ca:8080/papers/pp.pdf for more info. | |
4 * | |
5 * Tom St Denis, [email protected], http://tom.iahu.ca | |
6 */ | |
7 #include <time.h> | |
8 #include "tommath.h" | |
9 | |
10 int n_prime; | |
11 FILE *primes; | |
12 | |
13 /* fast square root */ | |
14 static mp_digit | |
15 i_sqrt (mp_word x) | |
16 { | |
17 mp_word x1, x2; | |
18 | |
19 x2 = x; | |
20 do { | |
21 x1 = x2; | |
22 x2 = x1 - ((x1 * x1) - x) / (2 * x1); | |
23 } while (x1 != x2); | |
24 | |
25 if (x1 * x1 > x) { | |
26 --x1; | |
27 } | |
28 | |
29 return x1; | |
30 } | |
31 | |
32 | |
33 /* generates a prime digit */ | |
34 static void gen_prime (void) | |
35 { | |
36 mp_digit r, x, y, next; | |
37 FILE *out; | |
38 | |
39 out = fopen("pprime.dat", "wb"); | |
40 | |
41 /* write first set of primes */ | |
42 r = 3; fwrite(&r, 1, sizeof(mp_digit), out); | |
43 r = 5; fwrite(&r, 1, sizeof(mp_digit), out); | |
44 r = 7; fwrite(&r, 1, sizeof(mp_digit), out); | |
45 r = 11; fwrite(&r, 1, sizeof(mp_digit), out); | |
46 r = 13; fwrite(&r, 1, sizeof(mp_digit), out); | |
47 r = 17; fwrite(&r, 1, sizeof(mp_digit), out); | |
48 r = 19; fwrite(&r, 1, sizeof(mp_digit), out); | |
49 r = 23; fwrite(&r, 1, sizeof(mp_digit), out); | |
50 r = 29; fwrite(&r, 1, sizeof(mp_digit), out); | |
51 r = 31; fwrite(&r, 1, sizeof(mp_digit), out); | |
52 | |
53 /* get square root, since if 'r' is composite its factors must be < than this */ | |
54 y = i_sqrt (r); | |
55 next = (y + 1) * (y + 1); | |
56 | |
57 for (;;) { | |
58 do { | |
59 r += 2; /* next candidate */ | |
60 r &= MP_MASK; | |
61 if (r < 31) break; | |
62 | |
63 /* update sqrt ? */ | |
64 if (next <= r) { | |
65 ++y; | |
66 next = (y + 1) * (y + 1); | |
67 } | |
68 | |
69 /* loop if divisible by 3,5,7,11,13,17,19,23,29 */ | |
70 if ((r % 3) == 0) { | |
71 x = 0; | |
72 continue; | |
73 } | |
74 if ((r % 5) == 0) { | |
75 x = 0; | |
76 continue; | |
77 } | |
78 if ((r % 7) == 0) { | |
79 x = 0; | |
80 continue; | |
81 } | |
82 if ((r % 11) == 0) { | |
83 x = 0; | |
84 continue; | |
85 } | |
86 if ((r % 13) == 0) { | |
87 x = 0; | |
88 continue; | |
89 } | |
90 if ((r % 17) == 0) { | |
91 x = 0; | |
92 continue; | |
93 } | |
94 if ((r % 19) == 0) { | |
95 x = 0; | |
96 continue; | |
97 } | |
98 if ((r % 23) == 0) { | |
99 x = 0; | |
100 continue; | |
101 } | |
102 if ((r % 29) == 0) { | |
103 x = 0; | |
104 continue; | |
105 } | |
106 | |
107 /* now check if r is divisible by x + k={1,7,11,13,17,19,23,29} */ | |
108 for (x = 30; x <= y; x += 30) { | |
109 if ((r % (x + 1)) == 0) { | |
110 x = 0; | |
111 break; | |
112 } | |
113 if ((r % (x + 7)) == 0) { | |
114 x = 0; | |
115 break; | |
116 } | |
117 if ((r % (x + 11)) == 0) { | |
118 x = 0; | |
119 break; | |
120 } | |
121 if ((r % (x + 13)) == 0) { | |
122 x = 0; | |
123 break; | |
124 } | |
125 if ((r % (x + 17)) == 0) { | |
126 x = 0; | |
127 break; | |
128 } | |
129 if ((r % (x + 19)) == 0) { | |
130 x = 0; | |
131 break; | |
132 } | |
133 if ((r % (x + 23)) == 0) { | |
134 x = 0; | |
135 break; | |
136 } | |
137 if ((r % (x + 29)) == 0) { | |
138 x = 0; | |
139 break; | |
140 } | |
141 } | |
142 } while (x == 0); | |
143 if (r > 31) { fwrite(&r, 1, sizeof(mp_digit), out); printf("%9d\r", r); fflush(stdout); } | |
144 if (r < 31) break; | |
145 } | |
146 | |
147 fclose(out); | |
148 } | |
149 | |
150 void load_tab(void) | |
151 { | |
152 primes = fopen("pprime.dat", "rb"); | |
153 if (primes == NULL) { | |
154 gen_prime(); | |
155 primes = fopen("pprime.dat", "rb"); | |
156 } | |
157 fseek(primes, 0, SEEK_END); | |
158 n_prime = ftell(primes) / sizeof(mp_digit); | |
159 } | |
160 | |
161 mp_digit prime_digit(void) | |
162 { | |
163 int n; | |
164 mp_digit d; | |
165 | |
166 n = abs(rand()) % n_prime; | |
167 fseek(primes, n * sizeof(mp_digit), SEEK_SET); | |
168 fread(&d, 1, sizeof(mp_digit), primes); | |
169 return d; | |
170 } | |
171 | |
172 | |
173 /* makes a prime of at least k bits */ | |
174 int | |
175 pprime (int k, int li, mp_int * p, mp_int * q) | |
176 { | |
177 mp_int a, b, c, n, x, y, z, v; | |
178 int res, ii; | |
179 static const mp_digit bases[] = { 2, 3, 5, 7, 11, 13, 17, 19 }; | |
180 | |
181 /* single digit ? */ | |
182 if (k <= (int) DIGIT_BIT) { | |
183 mp_set (p, prime_digit ()); | |
184 return MP_OKAY; | |
185 } | |
186 | |
187 if ((res = mp_init (&c)) != MP_OKAY) { | |
188 return res; | |
189 } | |
190 | |
191 if ((res = mp_init (&v)) != MP_OKAY) { | |
192 goto LBL_C; | |
193 } | |
194 | |
195 /* product of first 50 primes */ | |
196 if ((res = | |
197 mp_read_radix (&v, | |
198 "19078266889580195013601891820992757757219839668357012055907516904309700014933909014729740190", | |
199 10)) != MP_OKAY) { | |
200 goto LBL_V; | |
201 } | |
202 | |
203 if ((res = mp_init (&a)) != MP_OKAY) { | |
204 goto LBL_V; | |
205 } | |
206 | |
207 /* set the prime */ | |
208 mp_set (&a, prime_digit ()); | |
209 | |
210 if ((res = mp_init (&b)) != MP_OKAY) { | |
211 goto LBL_A; | |
212 } | |
213 | |
214 if ((res = mp_init (&n)) != MP_OKAY) { | |
215 goto LBL_B; | |
216 } | |
217 | |
218 if ((res = mp_init (&x)) != MP_OKAY) { | |
219 goto LBL_N; | |
220 } | |
221 | |
222 if ((res = mp_init (&y)) != MP_OKAY) { | |
223 goto LBL_X; | |
224 } | |
225 | |
226 if ((res = mp_init (&z)) != MP_OKAY) { | |
227 goto LBL_Y; | |
228 } | |
229 | |
230 /* now loop making the single digit */ | |
231 while (mp_count_bits (&a) < k) { | |
232 fprintf (stderr, "prime has %4d bits left\r", k - mp_count_bits (&a)); | |
233 fflush (stderr); | |
234 top: | |
235 mp_set (&b, prime_digit ()); | |
236 | |
237 /* now compute z = a * b * 2 */ | |
238 if ((res = mp_mul (&a, &b, &z)) != MP_OKAY) { /* z = a * b */ | |
239 goto LBL_Z; | |
240 } | |
241 | |
242 if ((res = mp_copy (&z, &c)) != MP_OKAY) { /* c = a * b */ | |
243 goto LBL_Z; | |
244 } | |
245 | |
246 if ((res = mp_mul_2 (&z, &z)) != MP_OKAY) { /* z = 2 * a * b */ | |
247 goto LBL_Z; | |
248 } | |
249 | |
250 /* n = z + 1 */ | |
251 if ((res = mp_add_d (&z, 1, &n)) != MP_OKAY) { /* n = z + 1 */ | |
252 goto LBL_Z; | |
253 } | |
254 | |
255 /* check (n, v) == 1 */ | |
256 if ((res = mp_gcd (&n, &v, &y)) != MP_OKAY) { /* y = (n, v) */ | |
257 goto LBL_Z; | |
258 } | |
259 | |
260 if (mp_cmp_d (&y, 1) != MP_EQ) | |
261 goto top; | |
262 | |
263 /* now try base x=bases[ii] */ | |
264 for (ii = 0; ii < li; ii++) { | |
265 mp_set (&x, bases[ii]); | |
266 | |
267 /* compute x^a mod n */ | |
268 if ((res = mp_exptmod (&x, &a, &n, &y)) != MP_OKAY) { /* y = x^a mod n */ | |
269 goto LBL_Z; | |
270 } | |
271 | |
272 /* if y == 1 loop */ | |
273 if (mp_cmp_d (&y, 1) == MP_EQ) | |
274 continue; | |
275 | |
276 /* now x^2a mod n */ | |
277 if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2a mod n */ | |
278 goto LBL_Z; | |
279 } | |
280 | |
281 if (mp_cmp_d (&y, 1) == MP_EQ) | |
282 continue; | |
283 | |
284 /* compute x^b mod n */ | |
285 if ((res = mp_exptmod (&x, &b, &n, &y)) != MP_OKAY) { /* y = x^b mod n */ | |
286 goto LBL_Z; | |
287 } | |
288 | |
289 /* if y == 1 loop */ | |
290 if (mp_cmp_d (&y, 1) == MP_EQ) | |
291 continue; | |
292 | |
293 /* now x^2b mod n */ | |
294 if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2b mod n */ | |
295 goto LBL_Z; | |
296 } | |
297 | |
298 if (mp_cmp_d (&y, 1) == MP_EQ) | |
299 continue; | |
300 | |
301 /* compute x^c mod n == x^ab mod n */ | |
302 if ((res = mp_exptmod (&x, &c, &n, &y)) != MP_OKAY) { /* y = x^ab mod n */ | |
303 goto LBL_Z; | |
304 } | |
305 | |
306 /* if y == 1 loop */ | |
307 if (mp_cmp_d (&y, 1) == MP_EQ) | |
308 continue; | |
309 | |
310 /* now compute (x^c mod n)^2 */ | |
311 if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2ab mod n */ | |
312 goto LBL_Z; | |
313 } | |
314 | |
315 /* y should be 1 */ | |
316 if (mp_cmp_d (&y, 1) != MP_EQ) | |
317 continue; | |
318 break; | |
319 } | |
320 | |
321 /* no bases worked? */ | |
322 if (ii == li) | |
323 goto top; | |
324 | |
325 { | |
326 char buf[4096]; | |
327 | |
328 mp_toradix(&n, buf, 10); | |
329 printf("Certificate of primality for:\n%s\n\n", buf); | |
330 mp_toradix(&a, buf, 10); | |
331 printf("A == \n%s\n\n", buf); | |
332 mp_toradix(&b, buf, 10); | |
333 printf("B == \n%s\n\nG == %d\n", buf, bases[ii]); | |
334 printf("----------------------------------------------------------------\n"); | |
335 } | |
336 | |
337 /* a = n */ | |
338 mp_copy (&n, &a); | |
339 } | |
340 | |
341 /* get q to be the order of the large prime subgroup */ | |
342 mp_sub_d (&n, 1, q); | |
343 mp_div_2 (q, q); | |
344 mp_div (q, &b, q, NULL); | |
345 | |
346 mp_exch (&n, p); | |
347 | |
348 res = MP_OKAY; | |
349 LBL_Z:mp_clear (&z); | |
350 LBL_Y:mp_clear (&y); | |
351 LBL_X:mp_clear (&x); | |
352 LBL_N:mp_clear (&n); | |
353 LBL_B:mp_clear (&b); | |
354 LBL_A:mp_clear (&a); | |
355 LBL_V:mp_clear (&v); | |
356 LBL_C:mp_clear (&c); | |
357 return res; | |
358 } | |
359 | |
360 | |
361 int | |
362 main (void) | |
363 { | |
364 mp_int p, q; | |
365 char buf[4096]; | |
366 int k, li; | |
367 clock_t t1; | |
368 | |
369 srand (time (NULL)); | |
370 load_tab(); | |
371 | |
372 printf ("Enter # of bits: \n"); | |
373 fgets (buf, sizeof (buf), stdin); | |
374 sscanf (buf, "%d", &k); | |
375 | |
376 printf ("Enter number of bases to try (1 to 8):\n"); | |
377 fgets (buf, sizeof (buf), stdin); | |
378 sscanf (buf, "%d", &li); | |
379 | |
380 | |
381 mp_init (&p); | |
382 mp_init (&q); | |
383 | |
384 t1 = clock (); | |
385 pprime (k, li, &p, &q); | |
386 t1 = clock () - t1; | |
387 | |
388 printf ("\n\nTook %ld ticks, %d bits\n", t1, mp_count_bits (&p)); | |
389 | |
390 mp_toradix (&p, buf, 10); | |
391 printf ("P == %s\n", buf); | |
392 mp_toradix (&q, buf, 10); | |
393 printf ("Q == %s\n", buf); | |
394 | |
395 return 0; | |
396 } |