comparison libtomcrypt/src/ciphers/rc2.c @ 302:973fccb59ea4 ucc-axis-hack

propagate from branch 'au.asn.ucc.matt.dropbear' (head 11034278bd1917bebcbdc69cf53b1891ce9db121) to branch 'au.asn.ucc.matt.dropbear.ucc-axis-hack' (head 10a1f614fec73d0820c3f61160d9db409b9beb46)
author Matt Johnston <matt@ucc.asn.au>
date Sat, 25 Mar 2006 12:59:58 +0000
parents 1b9e69c058d2
children 0cbe8f6dbf9e
comparison
equal deleted inserted replaced
299:740e782679be 302:973fccb59ea4
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
2 *
3 * LibTomCrypt is a library that provides various cryptographic
4 * algorithms in a highly modular and flexible manner.
5 *
6 * The library is free for all purposes without any express
7 * guarantee it works.
8 *
9 * Tom St Denis, [email protected], http://libtomcrypt.org
10 */
11 /**********************************************************************\
12 * To commemorate the 1996 RSA Data Security Conference, the following *
13 * code is released into the public domain by its author. Prost! *
14 * *
15 * This cipher uses 16-bit words and little-endian byte ordering. *
16 * I wonder which processor it was optimized for? *
17 * *
18 * Thanks to CodeView, SoftIce, and D86 for helping bring this code to *
19 * the public. *
20 \**********************************************************************/
21 #include <tomcrypt.h>
22
23 /**
24 @file rc2.c
25 Implementation of RC2
26 */
27
28 #ifdef RC2
29
30 const struct ltc_cipher_descriptor rc2_desc = {
31 "rc2",
32 12, 8, 128, 8, 16,
33 &rc2_setup,
34 &rc2_ecb_encrypt,
35 &rc2_ecb_decrypt,
36 &rc2_test,
37 &rc2_done,
38 &rc2_keysize,
39 NULL, NULL, NULL, NULL, NULL, NULL, NULL
40 };
41
42 /* 256-entry permutation table, probably derived somehow from pi */
43 static const unsigned char permute[256] = {
44 217,120,249,196, 25,221,181,237, 40,233,253,121, 74,160,216,157,
45 198,126, 55,131, 43,118, 83,142, 98, 76,100,136, 68,139,251,162,
46 23,154, 89,245,135,179, 79, 19, 97, 69,109,141, 9,129,125, 50,
47 189,143, 64,235,134,183,123, 11,240,149, 33, 34, 92,107, 78,130,
48 84,214,101,147,206, 96,178, 28,115, 86,192, 20,167,140,241,220,
49 18,117,202, 31, 59,190,228,209, 66, 61,212, 48,163, 60,182, 38,
50 111,191, 14,218, 70,105, 7, 87, 39,242, 29,155,188,148, 67, 3,
51 248, 17,199,246,144,239, 62,231, 6,195,213, 47,200,102, 30,215,
52 8,232,234,222,128, 82,238,247,132,170,114,172, 53, 77,106, 42,
53 150, 26,210,113, 90, 21, 73,116, 75,159,208, 94, 4, 24,164,236,
54 194,224, 65,110, 15, 81,203,204, 36,145,175, 80,161,244,112, 57,
55 153,124, 58,133, 35,184,180,122,252, 2, 54, 91, 37, 85,151, 49,
56 45, 93,250,152,227,138,146,174, 5,223, 41, 16,103,108,186,201,
57 211, 0,230,207,225,158,168, 44, 99, 22, 1, 63, 88,226,137,169,
58 13, 56, 52, 27,171, 51,255,176,187, 72, 12, 95,185,177,205, 46,
59 197,243,219, 71,229,165,156,119, 10,166, 32,104,254,127,193,173
60 };
61
62 /**
63 Initialize the RC2 block cipher
64 @param key The symmetric key you wish to pass
65 @param keylen The key length in bytes
66 @param num_rounds The number of rounds desired (0 for default)
67 @param skey The key in as scheduled by this function.
68 @return CRYPT_OK if successful
69 */
70 int rc2_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
71 {
72 unsigned *xkey = skey->rc2.xkey;
73 unsigned char tmp[128];
74 unsigned T8, TM;
75 int i, bits;
76
77 LTC_ARGCHK(key != NULL);
78 LTC_ARGCHK(skey != NULL);
79
80 if (keylen < 8 || keylen > 128) {
81 return CRYPT_INVALID_KEYSIZE;
82 }
83
84 if (num_rounds != 0 && num_rounds != 16) {
85 return CRYPT_INVALID_ROUNDS;
86 }
87
88 for (i = 0; i < keylen; i++) {
89 tmp[i] = key[i] & 255;
90 }
91
92 /* Phase 1: Expand input key to 128 bytes */
93 if (keylen < 128) {
94 for (i = keylen; i < 128; i++) {
95 tmp[i] = permute[(tmp[i - 1] + tmp[i - keylen]) & 255];
96 }
97 }
98
99 /* Phase 2 - reduce effective key size to "bits" */
100 bits = keylen<<3;
101 T8 = (unsigned)(bits+7)>>3;
102 TM = (255 >> (unsigned)(7 & -bits));
103 tmp[128 - T8] = permute[tmp[128 - T8] & TM];
104 for (i = 127 - T8; i >= 0; i--) {
105 tmp[i] = permute[tmp[i + 1] ^ tmp[i + T8]];
106 }
107
108 /* Phase 3 - copy to xkey in little-endian order */
109 for (i = 0; i < 64; i++) {
110 xkey[i] = (unsigned)tmp[2*i] + ((unsigned)tmp[2*i+1] << 8);
111 }
112
113 #ifdef LTC_CLEAN_STACK
114 zeromem(tmp, sizeof(tmp));
115 #endif
116
117 return CRYPT_OK;
118 }
119
120 /**********************************************************************\
121 * Encrypt an 8-byte block of plaintext using the given key. *
122 \**********************************************************************/
123 /**
124 Encrypts a block of text with RC2
125 @param pt The input plaintext (8 bytes)
126 @param ct The output ciphertext (8 bytes)
127 @param skey The key as scheduled
128 */
129 #ifdef LTC_CLEAN_STACK
130 static void _rc2_ecb_encrypt( const unsigned char *pt,
131 unsigned char *ct,
132 symmetric_key *skey)
133 #else
134 void rc2_ecb_encrypt( const unsigned char *pt,
135 unsigned char *ct,
136 symmetric_key *skey)
137 #endif
138 {
139 unsigned *xkey;
140 unsigned x76, x54, x32, x10, i;
141
142 LTC_ARGCHK(pt != NULL);
143 LTC_ARGCHK(ct != NULL);
144 LTC_ARGCHK(skey != NULL);
145
146 xkey = skey->rc2.xkey;
147
148 x76 = ((unsigned)pt[7] << 8) + (unsigned)pt[6];
149 x54 = ((unsigned)pt[5] << 8) + (unsigned)pt[4];
150 x32 = ((unsigned)pt[3] << 8) + (unsigned)pt[2];
151 x10 = ((unsigned)pt[1] << 8) + (unsigned)pt[0];
152
153 for (i = 0; i < 16; i++) {
154 x10 = (x10 + (x32 & ~x76) + (x54 & x76) + xkey[4*i+0]) & 0xFFFF;
155 x10 = ((x10 << 1) | (x10 >> 15));
156
157 x32 = (x32 + (x54 & ~x10) + (x76 & x10) + xkey[4*i+1]) & 0xFFFF;
158 x32 = ((x32 << 2) | (x32 >> 14));
159
160 x54 = (x54 + (x76 & ~x32) + (x10 & x32) + xkey[4*i+2]) & 0xFFFF;
161 x54 = ((x54 << 3) | (x54 >> 13));
162
163 x76 = (x76 + (x10 & ~x54) + (x32 & x54) + xkey[4*i+3]) & 0xFFFF;
164 x76 = ((x76 << 5) | (x76 >> 11));
165
166 if (i == 4 || i == 10) {
167 x10 = (x10 + xkey[x76 & 63]) & 0xFFFF;
168 x32 = (x32 + xkey[x10 & 63]) & 0xFFFF;
169 x54 = (x54 + xkey[x32 & 63]) & 0xFFFF;
170 x76 = (x76 + xkey[x54 & 63]) & 0xFFFF;
171 }
172 }
173
174 ct[0] = (unsigned char)x10;
175 ct[1] = (unsigned char)(x10 >> 8);
176 ct[2] = (unsigned char)x32;
177 ct[3] = (unsigned char)(x32 >> 8);
178 ct[4] = (unsigned char)x54;
179 ct[5] = (unsigned char)(x54 >> 8);
180 ct[6] = (unsigned char)x76;
181 ct[7] = (unsigned char)(x76 >> 8);
182 }
183
184 #ifdef LTC_CLEAN_STACK
185 void rc2_ecb_encrypt( const unsigned char *pt,
186 unsigned char *ct,
187 symmetric_key *skey)
188 {
189 _rc2_ecb_encrypt(pt, ct, skey);
190 burn_stack(sizeof(unsigned *) + sizeof(unsigned) * 5);
191 }
192 #endif
193
194 /**********************************************************************\
195 * Decrypt an 8-byte block of ciphertext using the given key. *
196 \**********************************************************************/
197 /**
198 Decrypts a block of text with RC2
199 @param ct The input ciphertext (8 bytes)
200 @param pt The output plaintext (8 bytes)
201 @param skey The key as scheduled
202 */
203 #ifdef LTC_CLEAN_STACK
204 static void _rc2_ecb_decrypt( const unsigned char *ct,
205 unsigned char *pt,
206 symmetric_key *skey)
207 #else
208 void rc2_ecb_decrypt( const unsigned char *ct,
209 unsigned char *pt,
210 symmetric_key *skey)
211 #endif
212 {
213 unsigned x76, x54, x32, x10;
214 unsigned *xkey;
215 int i;
216
217 LTC_ARGCHK(pt != NULL);
218 LTC_ARGCHK(ct != NULL);
219 LTC_ARGCHK(skey != NULL);
220
221 xkey = skey->rc2.xkey;
222
223 x76 = ((unsigned)ct[7] << 8) + (unsigned)ct[6];
224 x54 = ((unsigned)ct[5] << 8) + (unsigned)ct[4];
225 x32 = ((unsigned)ct[3] << 8) + (unsigned)ct[2];
226 x10 = ((unsigned)ct[1] << 8) + (unsigned)ct[0];
227
228 for (i = 15; i >= 0; i--) {
229 if (i == 4 || i == 10) {
230 x76 = (x76 - xkey[x54 & 63]) & 0xFFFF;
231 x54 = (x54 - xkey[x32 & 63]) & 0xFFFF;
232 x32 = (x32 - xkey[x10 & 63]) & 0xFFFF;
233 x10 = (x10 - xkey[x76 & 63]) & 0xFFFF;
234 }
235
236 x76 = ((x76 << 11) | (x76 >> 5));
237 x76 = (x76 - ((x10 & ~x54) + (x32 & x54) + xkey[4*i+3])) & 0xFFFF;
238
239 x54 = ((x54 << 13) | (x54 >> 3));
240 x54 = (x54 - ((x76 & ~x32) + (x10 & x32) + xkey[4*i+2])) & 0xFFFF;
241
242 x32 = ((x32 << 14) | (x32 >> 2));
243 x32 = (x32 - ((x54 & ~x10) + (x76 & x10) + xkey[4*i+1])) & 0xFFFF;
244
245 x10 = ((x10 << 15) | (x10 >> 1));
246 x10 = (x10 - ((x32 & ~x76) + (x54 & x76) + xkey[4*i+0])) & 0xFFFF;
247 }
248
249 pt[0] = (unsigned char)x10;
250 pt[1] = (unsigned char)(x10 >> 8);
251 pt[2] = (unsigned char)x32;
252 pt[3] = (unsigned char)(x32 >> 8);
253 pt[4] = (unsigned char)x54;
254 pt[5] = (unsigned char)(x54 >> 8);
255 pt[6] = (unsigned char)x76;
256 pt[7] = (unsigned char)(x76 >> 8);
257 }
258
259 #ifdef LTC_CLEAN_STACK
260 void rc2_ecb_decrypt( const unsigned char *ct,
261 unsigned char *pt,
262 symmetric_key *skey)
263 {
264 _rc2_ecb_decrypt(ct, pt, skey);
265 burn_stack(sizeof(unsigned *) + sizeof(unsigned) * 4 + sizeof(int));
266 }
267 #endif
268
269 /**
270 Performs a self-test of the RC2 block cipher
271 @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
272 */
273 int rc2_test(void)
274 {
275 #ifndef LTC_TEST
276 return CRYPT_NOP;
277 #else
278 static const struct {
279 int keylen;
280 unsigned char key[16], pt[8], ct[8];
281 } tests[] = {
282
283 { 8,
284 { 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
285 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
286 { 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 },
287 { 0x30, 0x64, 0x9e, 0xdf, 0x9b, 0xe7, 0xd2, 0xc2 }
288
289 },
290 { 16,
291 { 0x88, 0xbc, 0xa9, 0x0e, 0x90, 0x87, 0x5a, 0x7f,
292 0x0f, 0x79, 0xc3, 0x84, 0x62, 0x7b, 0xaf, 0xb2 },
293 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
294 { 0x22, 0x69, 0x55, 0x2a, 0xb0, 0xf8, 0x5c, 0xa6 }
295 }
296 };
297 int x, y, err;
298 symmetric_key skey;
299 unsigned char tmp[2][8];
300
301 for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
302 zeromem(tmp, sizeof(tmp));
303 if ((err = rc2_setup(tests[x].key, tests[x].keylen, 0, &skey)) != CRYPT_OK) {
304 return err;
305 }
306
307 rc2_ecb_encrypt(tests[x].pt, tmp[0], &skey);
308 rc2_ecb_decrypt(tmp[0], tmp[1], &skey);
309
310 if (memcmp(tmp[0], tests[x].ct, 8) != 0 || memcmp(tmp[1], tests[x].pt, 8) != 0) {
311 return CRYPT_FAIL_TESTVECTOR;
312 }
313
314 /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
315 for (y = 0; y < 8; y++) tmp[0][y] = 0;
316 for (y = 0; y < 1000; y++) rc2_ecb_encrypt(tmp[0], tmp[0], &skey);
317 for (y = 0; y < 1000; y++) rc2_ecb_decrypt(tmp[0], tmp[0], &skey);
318 for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
319 }
320 return CRYPT_OK;
321 #endif
322 }
323
324 /** Terminate the context
325 @param skey The scheduled key
326 */
327 void rc2_done(symmetric_key *skey)
328 {
329 }
330
331 /**
332 Gets suitable key size
333 @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
334 @return CRYPT_OK if the input key size is acceptable.
335 */
336 int rc2_keysize(int *keysize)
337 {
338 LTC_ARGCHK(keysize != NULL);
339 if (*keysize < 8) {
340 return CRYPT_INVALID_KEYSIZE;
341 } else if (*keysize > 128) {
342 *keysize = 128;
343 }
344 return CRYPT_OK;
345 }
346
347 #endif
348
349
350
351
352 /* $Source: /cvs/libtom/libtomcrypt/src/ciphers/rc2.c,v $ */
353 /* $Revision: 1.7 $ */
354 /* $Date: 2005/05/05 14:35:58 $ */