Mercurial > dropbear
comparison src/ciphers/skipjack.c @ 192:9cc34777b479 libtomcrypt
propagate from branch 'au.asn.ucc.matt.ltc-orig' (head 9ba8f01f44320e9cb9f19881105ae84f84a43ea9)
to branch 'au.asn.ucc.matt.dropbear.ltc' (head dbf51c569bc34956ad948e4cc87a0eeb2170b768)
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Sun, 08 May 2005 06:36:47 +0000 |
parents | 1c15b283127b |
children | 39d5d58461d6 |
comparison
equal
deleted
inserted
replaced
164:cd1143579f00 | 192:9cc34777b479 |
---|---|
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis | |
2 * | |
3 * LibTomCrypt is a library that provides various cryptographic | |
4 * algorithms in a highly modular and flexible manner. | |
5 * | |
6 * The library is free for all purposes without any express | |
7 * guarantee it works. | |
8 * | |
9 * Tom St Denis, [email protected], http://libtomcrypt.org | |
10 */ | |
11 | |
12 /** | |
13 @file skipjack.c | |
14 Skipjack Implementation by Tom St Denis | |
15 */ | |
16 #include "tomcrypt.h" | |
17 | |
18 #ifdef SKIPJACK | |
19 | |
20 const struct ltc_cipher_descriptor skipjack_desc = | |
21 { | |
22 "skipjack", | |
23 17, | |
24 10, 10, 8, 32, | |
25 &skipjack_setup, | |
26 &skipjack_ecb_encrypt, | |
27 &skipjack_ecb_decrypt, | |
28 &skipjack_test, | |
29 &skipjack_done, | |
30 &skipjack_keysize, | |
31 NULL, NULL, NULL, NULL, NULL, NULL, NULL | |
32 }; | |
33 | |
34 static const unsigned char sbox[256] = { | |
35 0xa3,0xd7,0x09,0x83,0xf8,0x48,0xf6,0xf4,0xb3,0x21,0x15,0x78,0x99,0xb1,0xaf,0xf9, | |
36 0xe7,0x2d,0x4d,0x8a,0xce,0x4c,0xca,0x2e,0x52,0x95,0xd9,0x1e,0x4e,0x38,0x44,0x28, | |
37 0x0a,0xdf,0x02,0xa0,0x17,0xf1,0x60,0x68,0x12,0xb7,0x7a,0xc3,0xe9,0xfa,0x3d,0x53, | |
38 0x96,0x84,0x6b,0xba,0xf2,0x63,0x9a,0x19,0x7c,0xae,0xe5,0xf5,0xf7,0x16,0x6a,0xa2, | |
39 0x39,0xb6,0x7b,0x0f,0xc1,0x93,0x81,0x1b,0xee,0xb4,0x1a,0xea,0xd0,0x91,0x2f,0xb8, | |
40 0x55,0xb9,0xda,0x85,0x3f,0x41,0xbf,0xe0,0x5a,0x58,0x80,0x5f,0x66,0x0b,0xd8,0x90, | |
41 0x35,0xd5,0xc0,0xa7,0x33,0x06,0x65,0x69,0x45,0x00,0x94,0x56,0x6d,0x98,0x9b,0x76, | |
42 0x97,0xfc,0xb2,0xc2,0xb0,0xfe,0xdb,0x20,0xe1,0xeb,0xd6,0xe4,0xdd,0x47,0x4a,0x1d, | |
43 0x42,0xed,0x9e,0x6e,0x49,0x3c,0xcd,0x43,0x27,0xd2,0x07,0xd4,0xde,0xc7,0x67,0x18, | |
44 0x89,0xcb,0x30,0x1f,0x8d,0xc6,0x8f,0xaa,0xc8,0x74,0xdc,0xc9,0x5d,0x5c,0x31,0xa4, | |
45 0x70,0x88,0x61,0x2c,0x9f,0x0d,0x2b,0x87,0x50,0x82,0x54,0x64,0x26,0x7d,0x03,0x40, | |
46 0x34,0x4b,0x1c,0x73,0xd1,0xc4,0xfd,0x3b,0xcc,0xfb,0x7f,0xab,0xe6,0x3e,0x5b,0xa5, | |
47 0xad,0x04,0x23,0x9c,0x14,0x51,0x22,0xf0,0x29,0x79,0x71,0x7e,0xff,0x8c,0x0e,0xe2, | |
48 0x0c,0xef,0xbc,0x72,0x75,0x6f,0x37,0xa1,0xec,0xd3,0x8e,0x62,0x8b,0x86,0x10,0xe8, | |
49 0x08,0x77,0x11,0xbe,0x92,0x4f,0x24,0xc5,0x32,0x36,0x9d,0xcf,0xf3,0xa6,0xbb,0xac, | |
50 0x5e,0x6c,0xa9,0x13,0x57,0x25,0xb5,0xe3,0xbd,0xa8,0x3a,0x01,0x05,0x59,0x2a,0x46 | |
51 }; | |
52 | |
53 /* simple x + 1 (mod 10) in one step. */ | |
54 static const int keystep[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 }; | |
55 | |
56 /* simple x - 1 (mod 10) in one step */ | |
57 static const int ikeystep[] = { 9, 0, 1, 2, 3, 4, 5, 6, 7, 8 }; | |
58 | |
59 /** | |
60 Initialize the Skipjack block cipher | |
61 @param key The symmetric key you wish to pass | |
62 @param keylen The key length in bytes | |
63 @param num_rounds The number of rounds desired (0 for default) | |
64 @param skey The key in as scheduled by this function. | |
65 @return CRYPT_OK if successful | |
66 */ | |
67 int skipjack_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) | |
68 { | |
69 int x; | |
70 | |
71 LTC_ARGCHK(key != NULL); | |
72 LTC_ARGCHK(skey != NULL); | |
73 | |
74 if (keylen != 10) { | |
75 return CRYPT_INVALID_KEYSIZE; | |
76 } | |
77 | |
78 if (num_rounds != 32 && num_rounds != 0) { | |
79 return CRYPT_INVALID_ROUNDS; | |
80 } | |
81 | |
82 /* make sure the key is in range for platforms where CHAR_BIT != 8 */ | |
83 for (x = 0; x < 10; x++) { | |
84 skey->skipjack.key[x] = key[x] & 255; | |
85 } | |
86 | |
87 return CRYPT_OK; | |
88 } | |
89 | |
90 #define RULE_A \ | |
91 tmp = g_func(w1, &kp, skey->skipjack.key); \ | |
92 w1 = tmp ^ w4 ^ x; \ | |
93 w4 = w3; w3 = w2; \ | |
94 w2 = tmp; | |
95 | |
96 #define RULE_B \ | |
97 tmp = g_func(w1, &kp, skey->skipjack.key); \ | |
98 tmp1 = w4; w4 = w3; \ | |
99 w3 = w1 ^ w2 ^ x; \ | |
100 w1 = tmp1; w2 = tmp; | |
101 | |
102 #define RULE_A1 \ | |
103 tmp = w1 ^ w2 ^ x; \ | |
104 w1 = ig_func(w2, &kp, skey->skipjack.key); \ | |
105 w2 = w3; w3 = w4; w4 = tmp; | |
106 | |
107 #define RULE_B1 \ | |
108 tmp = ig_func(w2, &kp, skey->skipjack.key); \ | |
109 w2 = tmp ^ w3 ^ x; \ | |
110 w3 = w4; w4 = w1; w1 = tmp; | |
111 | |
112 static unsigned g_func(unsigned w, int *kp, unsigned char *key) | |
113 { | |
114 unsigned char g1,g2; | |
115 | |
116 g1 = (w >> 8) & 255; g2 = w & 255; | |
117 g1 ^= sbox[g2^key[*kp]]; *kp = keystep[*kp]; | |
118 g2 ^= sbox[g1^key[*kp]]; *kp = keystep[*kp]; | |
119 g1 ^= sbox[g2^key[*kp]]; *kp = keystep[*kp]; | |
120 g2 ^= sbox[g1^key[*kp]]; *kp = keystep[*kp]; | |
121 return ((unsigned)g1<<8)|(unsigned)g2; | |
122 } | |
123 | |
124 static unsigned ig_func(unsigned w, int *kp, unsigned char *key) | |
125 { | |
126 unsigned char g1,g2; | |
127 | |
128 g1 = (w >> 8) & 255; g2 = w & 255; | |
129 *kp = ikeystep[*kp]; g2 ^= sbox[g1^key[*kp]]; | |
130 *kp = ikeystep[*kp]; g1 ^= sbox[g2^key[*kp]]; | |
131 *kp = ikeystep[*kp]; g2 ^= sbox[g1^key[*kp]]; | |
132 *kp = ikeystep[*kp]; g1 ^= sbox[g2^key[*kp]]; | |
133 return ((unsigned)g1<<8)|(unsigned)g2; | |
134 } | |
135 | |
136 /** | |
137 Encrypts a block of text with Skipjack | |
138 @param pt The input plaintext (8 bytes) | |
139 @param ct The output ciphertext (8 bytes) | |
140 @param skey The key as scheduled | |
141 */ | |
142 #ifdef LTC_CLEAN_STACK | |
143 static void _skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) | |
144 #else | |
145 void skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) | |
146 #endif | |
147 { | |
148 unsigned w1,w2,w3,w4,tmp,tmp1; | |
149 int x, kp; | |
150 | |
151 LTC_ARGCHK(pt != NULL); | |
152 LTC_ARGCHK(ct != NULL); | |
153 LTC_ARGCHK(skey != NULL); | |
154 | |
155 /* load block */ | |
156 w1 = ((unsigned)pt[0]<<8)|pt[1]; | |
157 w2 = ((unsigned)pt[2]<<8)|pt[3]; | |
158 w3 = ((unsigned)pt[4]<<8)|pt[5]; | |
159 w4 = ((unsigned)pt[6]<<8)|pt[7]; | |
160 | |
161 /* 8 rounds of RULE A */ | |
162 for (x = 1, kp = 0; x < 9; x++) { | |
163 RULE_A; | |
164 } | |
165 | |
166 /* 8 rounds of RULE B */ | |
167 for (; x < 17; x++) { | |
168 RULE_B; | |
169 } | |
170 | |
171 /* 8 rounds of RULE A */ | |
172 for (; x < 25; x++) { | |
173 RULE_A; | |
174 } | |
175 | |
176 /* 8 rounds of RULE B */ | |
177 for (; x < 33; x++) { | |
178 RULE_B; | |
179 } | |
180 | |
181 /* store block */ | |
182 ct[0] = (w1>>8)&255; ct[1] = w1&255; | |
183 ct[2] = (w2>>8)&255; ct[3] = w2&255; | |
184 ct[4] = (w3>>8)&255; ct[5] = w3&255; | |
185 ct[6] = (w4>>8)&255; ct[7] = w4&255; | |
186 } | |
187 | |
188 #ifdef LTC_CLEAN_STACK | |
189 void skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) | |
190 { | |
191 _skipjack_ecb_encrypt(pt, ct, skey); | |
192 burn_stack(sizeof(unsigned) * 8 + sizeof(int) * 2); | |
193 } | |
194 #endif | |
195 | |
196 /** | |
197 Decrypts a block of text with Skipjack | |
198 @param ct The input ciphertext (8 bytes) | |
199 @param pt The output plaintext (8 bytes) | |
200 @param skey The key as scheduled | |
201 */ | |
202 #ifdef LTC_CLEAN_STACK | |
203 static void _skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) | |
204 #else | |
205 void skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) | |
206 #endif | |
207 { | |
208 unsigned w1,w2,w3,w4,tmp; | |
209 int x, kp; | |
210 | |
211 LTC_ARGCHK(pt != NULL); | |
212 LTC_ARGCHK(ct != NULL); | |
213 LTC_ARGCHK(skey != NULL); | |
214 | |
215 /* load block */ | |
216 w1 = ((unsigned)ct[0]<<8)|ct[1]; | |
217 w2 = ((unsigned)ct[2]<<8)|ct[3]; | |
218 w3 = ((unsigned)ct[4]<<8)|ct[5]; | |
219 w4 = ((unsigned)ct[6]<<8)|ct[7]; | |
220 | |
221 /* 8 rounds of RULE B^-1 | |
222 | |
223 Note the value "kp = 8" comes from "kp = (32 * 4) mod 10" where 32*4 is 128 which mod 10 is 8 | |
224 */ | |
225 for (x = 32, kp = 8; x > 24; x--) { | |
226 RULE_B1; | |
227 } | |
228 | |
229 /* 8 rounds of RULE A^-1 */ | |
230 for (; x > 16; x--) { | |
231 RULE_A1; | |
232 } | |
233 | |
234 | |
235 /* 8 rounds of RULE B^-1 */ | |
236 for (; x > 8; x--) { | |
237 RULE_B1; | |
238 } | |
239 | |
240 /* 8 rounds of RULE A^-1 */ | |
241 for (; x > 0; x--) { | |
242 RULE_A1; | |
243 } | |
244 | |
245 /* store block */ | |
246 pt[0] = (w1>>8)&255; pt[1] = w1&255; | |
247 pt[2] = (w2>>8)&255; pt[3] = w2&255; | |
248 pt[4] = (w3>>8)&255; pt[5] = w3&255; | |
249 pt[6] = (w4>>8)&255; pt[7] = w4&255; | |
250 } | |
251 | |
252 #ifdef LTC_CLEAN_STACK | |
253 void skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) | |
254 { | |
255 _skipjack_ecb_decrypt(ct, pt, skey); | |
256 burn_stack(sizeof(unsigned) * 7 + sizeof(int) * 2); | |
257 } | |
258 #endif | |
259 | |
260 /** | |
261 Performs a self-test of the Skipjack block cipher | |
262 @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled | |
263 */ | |
264 int skipjack_test(void) | |
265 { | |
266 #ifndef LTC_TEST | |
267 return CRYPT_NOP; | |
268 #else | |
269 static const struct { | |
270 unsigned char key[10], pt[8], ct[8]; | |
271 } tests[] = { | |
272 { | |
273 { 0x00, 0x99, 0x88, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11 }, | |
274 { 0x33, 0x22, 0x11, 0x00, 0xdd, 0xcc, 0xbb, 0xaa }, | |
275 { 0x25, 0x87, 0xca, 0xe2, 0x7a, 0x12, 0xd3, 0x00 } | |
276 } | |
277 }; | |
278 unsigned char buf[2][8]; | |
279 int x, y, err; | |
280 symmetric_key key; | |
281 | |
282 for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) { | |
283 /* setup key */ | |
284 if ((err = skipjack_setup(tests[x].key, 10, 0, &key)) != CRYPT_OK) { | |
285 return err; | |
286 } | |
287 | |
288 /* encrypt and decrypt */ | |
289 skipjack_ecb_encrypt(tests[x].pt, buf[0], &key); | |
290 skipjack_ecb_decrypt(buf[0], buf[1], &key); | |
291 | |
292 /* compare */ | |
293 if (memcmp(buf[0], tests[x].ct, 8) != 0 || memcmp(buf[1], tests[x].pt, 8) != 0) { | |
294 return CRYPT_FAIL_TESTVECTOR; | |
295 } | |
296 | |
297 /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ | |
298 for (y = 0; y < 8; y++) buf[0][y] = 0; | |
299 for (y = 0; y < 1000; y++) skipjack_ecb_encrypt(buf[0], buf[0], &key); | |
300 for (y = 0; y < 1000; y++) skipjack_ecb_decrypt(buf[0], buf[0], &key); | |
301 for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; | |
302 } | |
303 | |
304 return CRYPT_OK; | |
305 #endif | |
306 } | |
307 | |
308 /** Terminate the context | |
309 @param skey The scheduled key | |
310 */ | |
311 void skipjack_done(symmetric_key *skey) | |
312 { | |
313 } | |
314 | |
315 /** | |
316 Gets suitable key size | |
317 @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable. | |
318 @return CRYPT_OK if the input key size is acceptable. | |
319 */ | |
320 int skipjack_keysize(int *keysize) | |
321 { | |
322 LTC_ARGCHK(keysize != NULL); | |
323 if (*keysize < 10) { | |
324 return CRYPT_INVALID_KEYSIZE; | |
325 } else if (*keysize > 10) { | |
326 *keysize = 10; | |
327 } | |
328 return CRYPT_OK; | |
329 } | |
330 | |
331 #endif |