comparison libtommath/bn_mp_div.c @ 293:9d110777f345 contrib-blacklist

propagate from branch 'au.asn.ucc.matt.dropbear' (head 7ad1775ed65e75dbece27fe6b65bf1a234db386a) to branch 'au.asn.ucc.matt.dropbear.contrib.blacklist' (head 1d86a4f0a401cc68c2670d821a2f6366c37af143)
author Matt Johnston <matt@ucc.asn.au>
date Fri, 10 Mar 2006 06:31:29 +0000
parents eed26cff980b
children 1c7a072000e0
comparison
equal deleted inserted replaced
247:c07de41b53d7 293:9d110777f345
1 #include <tommath.h>
2 #ifdef BN_MP_DIV_C
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis
4 *
5 * LibTomMath is a library that provides multiple-precision
6 * integer arithmetic as well as number theoretic functionality.
7 *
8 * The library was designed directly after the MPI library by
9 * Michael Fromberger but has been written from scratch with
10 * additional optimizations in place.
11 *
12 * The library is free for all purposes without any express
13 * guarantee it works.
14 *
15 * Tom St Denis, [email protected], http://math.libtomcrypt.org
16 */
17
18 #ifdef BN_MP_DIV_SMALL
19
20 /* slower bit-bang division... also smaller */
21 int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
22 {
23 mp_int ta, tb, tq, q;
24 int res, n, n2;
25
26 /* is divisor zero ? */
27 if (mp_iszero (b) == 1) {
28 return MP_VAL;
29 }
30
31 /* if a < b then q=0, r = a */
32 if (mp_cmp_mag (a, b) == MP_LT) {
33 if (d != NULL) {
34 res = mp_copy (a, d);
35 } else {
36 res = MP_OKAY;
37 }
38 if (c != NULL) {
39 mp_zero (c);
40 }
41 return res;
42 }
43
44 /* init our temps */
45 if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
46 return res;
47 }
48
49
50 mp_set(&tq, 1);
51 n = mp_count_bits(a) - mp_count_bits(b);
52 if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
53 ((res = mp_abs(b, &tb)) != MP_OKAY) ||
54 ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
55 ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
56 goto LBL_ERR;
57 }
58
59 while (n-- >= 0) {
60 if (mp_cmp(&tb, &ta) != MP_GT) {
61 if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
62 ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
63 goto LBL_ERR;
64 }
65 }
66 if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
67 ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
68 goto LBL_ERR;
69 }
70 }
71
72 /* now q == quotient and ta == remainder */
73 n = a->sign;
74 n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
75 if (c != NULL) {
76 mp_exch(c, &q);
77 c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
78 }
79 if (d != NULL) {
80 mp_exch(d, &ta);
81 d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
82 }
83 LBL_ERR:
84 mp_clear_multi(&ta, &tb, &tq, &q, NULL);
85 return res;
86 }
87
88 #else
89
90 /* integer signed division.
91 * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
92 * HAC pp.598 Algorithm 14.20
93 *
94 * Note that the description in HAC is horribly
95 * incomplete. For example, it doesn't consider
96 * the case where digits are removed from 'x' in
97 * the inner loop. It also doesn't consider the
98 * case that y has fewer than three digits, etc..
99 *
100 * The overall algorithm is as described as
101 * 14.20 from HAC but fixed to treat these cases.
102 */
103 int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
104 {
105 mp_int q, x, y, t1, t2;
106 int res, n, t, i, norm, neg;
107
108 /* is divisor zero ? */
109 if (mp_iszero (b) == 1) {
110 return MP_VAL;
111 }
112
113 /* if a < b then q=0, r = a */
114 if (mp_cmp_mag (a, b) == MP_LT) {
115 if (d != NULL) {
116 res = mp_copy (a, d);
117 } else {
118 res = MP_OKAY;
119 }
120 if (c != NULL) {
121 mp_zero (c);
122 }
123 return res;
124 }
125
126 if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
127 return res;
128 }
129 q.used = a->used + 2;
130
131 if ((res = mp_init (&t1)) != MP_OKAY) {
132 goto LBL_Q;
133 }
134
135 if ((res = mp_init (&t2)) != MP_OKAY) {
136 goto LBL_T1;
137 }
138
139 if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
140 goto LBL_T2;
141 }
142
143 if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
144 goto LBL_X;
145 }
146
147 /* fix the sign */
148 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
149 x.sign = y.sign = MP_ZPOS;
150
151 /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
152 norm = mp_count_bits(&y) % DIGIT_BIT;
153 if (norm < (int)(DIGIT_BIT-1)) {
154 norm = (DIGIT_BIT-1) - norm;
155 if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
156 goto LBL_Y;
157 }
158 if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
159 goto LBL_Y;
160 }
161 } else {
162 norm = 0;
163 }
164
165 /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
166 n = x.used - 1;
167 t = y.used - 1;
168
169 /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
170 if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
171 goto LBL_Y;
172 }
173
174 while (mp_cmp (&x, &y) != MP_LT) {
175 ++(q.dp[n - t]);
176 if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
177 goto LBL_Y;
178 }
179 }
180
181 /* reset y by shifting it back down */
182 mp_rshd (&y, n - t);
183
184 /* step 3. for i from n down to (t + 1) */
185 for (i = n; i >= (t + 1); i--) {
186 if (i > x.used) {
187 continue;
188 }
189
190 /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
191 * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
192 if (x.dp[i] == y.dp[t]) {
193 q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
194 } else {
195 mp_word tmp;
196 tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
197 tmp |= ((mp_word) x.dp[i - 1]);
198 tmp /= ((mp_word) y.dp[t]);
199 if (tmp > (mp_word) MP_MASK)
200 tmp = MP_MASK;
201 q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
202 }
203
204 /* while (q{i-t-1} * (yt * b + y{t-1})) >
205 xi * b**2 + xi-1 * b + xi-2
206
207 do q{i-t-1} -= 1;
208 */
209 q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
210 do {
211 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
212
213 /* find left hand */
214 mp_zero (&t1);
215 t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
216 t1.dp[1] = y.dp[t];
217 t1.used = 2;
218 if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
219 goto LBL_Y;
220 }
221
222 /* find right hand */
223 t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
224 t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
225 t2.dp[2] = x.dp[i];
226 t2.used = 3;
227 } while (mp_cmp_mag(&t1, &t2) == MP_GT);
228
229 /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
230 if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
231 goto LBL_Y;
232 }
233
234 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
235 goto LBL_Y;
236 }
237
238 if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
239 goto LBL_Y;
240 }
241
242 /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
243 if (x.sign == MP_NEG) {
244 if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
245 goto LBL_Y;
246 }
247 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
248 goto LBL_Y;
249 }
250 if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
251 goto LBL_Y;
252 }
253
254 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
255 }
256 }
257
258 /* now q is the quotient and x is the remainder
259 * [which we have to normalize]
260 */
261
262 /* get sign before writing to c */
263 x.sign = x.used == 0 ? MP_ZPOS : a->sign;
264
265 if (c != NULL) {
266 mp_clamp (&q);
267 mp_exch (&q, c);
268 c->sign = neg;
269 }
270
271 if (d != NULL) {
272 mp_div_2d (&x, norm, &x, NULL);
273 mp_exch (&x, d);
274 }
275
276 res = MP_OKAY;
277
278 LBL_Y:mp_clear (&y);
279 LBL_X:mp_clear (&x);
280 LBL_T2:mp_clear (&t2);
281 LBL_T1:mp_clear (&t1);
282 LBL_Q:mp_clear (&q);
283 return res;
284 }
285
286 #endif
287
288 #endif