Mercurial > dropbear
comparison libtommath/bn_mp_jacobi.c @ 293:9d110777f345 contrib-blacklist
propagate from branch 'au.asn.ucc.matt.dropbear' (head 7ad1775ed65e75dbece27fe6b65bf1a234db386a)
to branch 'au.asn.ucc.matt.dropbear.contrib.blacklist' (head 1d86a4f0a401cc68c2670d821a2f6366c37af143)
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Fri, 10 Mar 2006 06:31:29 +0000 |
parents | eed26cff980b |
children | 5ff8218bcee9 |
comparison
equal
deleted
inserted
replaced
247:c07de41b53d7 | 293:9d110777f345 |
---|---|
1 #include <tommath.h> | |
2 #ifdef BN_MP_JACOBI_C | |
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
4 * | |
5 * LibTomMath is a library that provides multiple-precision | |
6 * integer arithmetic as well as number theoretic functionality. | |
7 * | |
8 * The library was designed directly after the MPI library by | |
9 * Michael Fromberger but has been written from scratch with | |
10 * additional optimizations in place. | |
11 * | |
12 * The library is free for all purposes without any express | |
13 * guarantee it works. | |
14 * | |
15 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
16 */ | |
17 | |
18 /* computes the jacobi c = (a | n) (or Legendre if n is prime) | |
19 * HAC pp. 73 Algorithm 2.149 | |
20 */ | |
21 int mp_jacobi (mp_int * a, mp_int * p, int *c) | |
22 { | |
23 mp_int a1, p1; | |
24 int k, s, r, res; | |
25 mp_digit residue; | |
26 | |
27 /* if p <= 0 return MP_VAL */ | |
28 if (mp_cmp_d(p, 0) != MP_GT) { | |
29 return MP_VAL; | |
30 } | |
31 | |
32 /* step 1. if a == 0, return 0 */ | |
33 if (mp_iszero (a) == 1) { | |
34 *c = 0; | |
35 return MP_OKAY; | |
36 } | |
37 | |
38 /* step 2. if a == 1, return 1 */ | |
39 if (mp_cmp_d (a, 1) == MP_EQ) { | |
40 *c = 1; | |
41 return MP_OKAY; | |
42 } | |
43 | |
44 /* default */ | |
45 s = 0; | |
46 | |
47 /* step 3. write a = a1 * 2**k */ | |
48 if ((res = mp_init_copy (&a1, a)) != MP_OKAY) { | |
49 return res; | |
50 } | |
51 | |
52 if ((res = mp_init (&p1)) != MP_OKAY) { | |
53 goto LBL_A1; | |
54 } | |
55 | |
56 /* divide out larger power of two */ | |
57 k = mp_cnt_lsb(&a1); | |
58 if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) { | |
59 goto LBL_P1; | |
60 } | |
61 | |
62 /* step 4. if e is even set s=1 */ | |
63 if ((k & 1) == 0) { | |
64 s = 1; | |
65 } else { | |
66 /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */ | |
67 residue = p->dp[0] & 7; | |
68 | |
69 if (residue == 1 || residue == 7) { | |
70 s = 1; | |
71 } else if (residue == 3 || residue == 5) { | |
72 s = -1; | |
73 } | |
74 } | |
75 | |
76 /* step 5. if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */ | |
77 if ( ((p->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) { | |
78 s = -s; | |
79 } | |
80 | |
81 /* if a1 == 1 we're done */ | |
82 if (mp_cmp_d (&a1, 1) == MP_EQ) { | |
83 *c = s; | |
84 } else { | |
85 /* n1 = n mod a1 */ | |
86 if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) { | |
87 goto LBL_P1; | |
88 } | |
89 if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) { | |
90 goto LBL_P1; | |
91 } | |
92 *c = s * r; | |
93 } | |
94 | |
95 /* done */ | |
96 res = MP_OKAY; | |
97 LBL_P1:mp_clear (&p1); | |
98 LBL_A1:mp_clear (&a1); | |
99 return res; | |
100 } | |
101 #endif |